Роль катализатора в химической реакции. Инсулин катализатор многих химических реакций


Как называются биологические катализаторы? Ферменты как биологические катализаторы

Человеческий организм называют биохимической фабрикой совершенно не зря. Ведь каждую минуту в нем происходят тысячи, десятки и сотни тысяч процессов окисления, расщепления, восстановления и прочих реакций. Что позволяет им протекать с такой огромной скоростью, обеспечивая каждую клетку энергией, питанием и кислородом?

биологические катализаторы

Понятие о катализаторах

Как в неорганической, так и в органической химии очень широко используются специальные вещества, способные ускорять протекание химических реакций в несколько тысяч, а иногда и миллионов раз. Название этих соединений - "катализаторы". В неорганической химии это оксиды металлов, платина, серебро, никель и другие.

Их главное действие - образование временных комплексов с участниками реакции, за счет понижения энергии активации процесс осуществляется в несколько раз быстрее. После этого комплекс распадается, и из сферы можно вывести катализатор в том же количественном и качественном составе, что и до начала процесса.

Существует два варианта каталитических реакций:

  • гомогенные - ускоритель и участники в одном агрегатном состоянии;
  • гетерогенные - ускоритель и участники в разных состояниях, есть граница раздела фаз.

Кроме того, есть и противоположные по действию соединения - ингибиторы. Они направлены на замедление необходимых реакций. Так, например, они позволяют снизить количество времени на формирование коррозии.

Биологические катализаторы по своей природе отличаются от неорганических, да и свойства их несколько специфичны. Поэтому в живых системах катализ другой.

биологические катализаторы 9 класс

Ферменты - что это?

Доказано, что если бы действие специальных веществ, ускоряющих обозначенные процессы, не осуществлялось внутри живых систем, то обычное яблоко в желудке переваривалось бы около двух дней. За такое количество времени начались бы процессы разложения и интоксикация продуктами гниения. Однако этого не происходит, и фрукт полностью перерабатывается уже за полтора часа. Осуществляют это биологические катализаторы, которые в большом количестве присутствуют в составе каждого организма. Но что они собой представляют и на чем основано такое действие?

Биологические катализаторы белковой природы - это ферменты. Их основа - сложные структурная организация, обладающая рядом специфичных свойств. Проще говоря, это уникальные белки, способные снижать энергию активации процессов в живых организмах и осуществлять их со скоростью, превышающей обычные значения в несколько миллионов раз.

Можно привести множество примеров подобных молекул:

  • каталаза;
  • амилаза;
  • оксиредуктаза;
  • глюкозооксидаза;
  • липаза;
  • инвертаза;
  • лизоцим;
  • протеаза и другие.

Таким образом, можно сделать вывод: ферменты - биологические катализаторы белковой природы, которые действуют как сильные ускорители, позволяя осуществлять тысячи процессов в живых организмах с очень высокой скоростью. На их действии основано пищеварение, окисление, восстановление.

ферменты как биологические катализаторы

Сходства неорганических и белковых катализаторов

Ферменты как биологические катализаторы имеют ряд свойств, схожих с неорганическими. К таковым можно отнести следующие:

  1. Ускоряют только термодинамически возможные реакции.
  2. Не влияют на смещение химического равновесия в равновесных системах, а одинаково ускоряют как прямой, так и обратный процесс.
  3. В итоге в сфере реакции остаются только продукты, катализатор в их число не входит.

Однако, помимо схожести, существуют еще и отличительные особенности ферментов.

Различия в зависимости от природы

Биологические катализаторы имеют несколько специфических особенностей:

  1. Высокая степень избирательности. То есть один белок способен активизировать только какую-то определенную реакцию или группу схожих. Чаще всего работает схема "фермент - субстрат одного процесса".
  2. Чрезвычайно высокая степень активности, ведь некоторые виды белков способны ускорять реакции в миллионы раз.
  3. Ферменты сильно зависят от условий среды. Проявляют активность только в определенном интервале температур. Также сильно влияет рН среды. Существует кривая, показывающая значения минимума, максимума и оптимума по показателям для каждого фермента.
  4. Существуют специальные соединения, называемые эффекторами, которые способны угнетать природу биологических катализаторов либо, наоборот, положительно влиять на них.
  5. Субстрат, на котором работает фермент, должен быть строго специфичен. Существует теория, которая носит название ключа и замка. Она описывает механизм действия фермента на субстрате. Катализатор, подобно ключу, встраивается в субстрат своим активным центром, и начинается реакция.
  6. После процесса фермент частично либо полностью разрушается.

Таким образом, очевидно, что значение белковых катализаторов крайне велико для живых организмов. Однако действие их подчиняется определенным правилам и ограничивается рамками условий окружающей среды.

ферменты биологические катализаторы белковой природы

Изучение катализа в школе

В рамках школьной программы катализаторы изучаются как на химии, так и на биологии. На уроках химии они изучаются с точки зрения веществ, позволяющих осуществлять промышленные синтезы, получать большое количество разнообразных продуктов. На уроках биологии рассматриваются именно биологические катализаторы. 9 класс подразумевает изучение молекулярной биологии и основ биохимии. Поэтому именно на данной ступени образования учащиеся и получают основы знаний о ферментах как действующих веществах в организмах живых существ.

На уроках проводятся опыты, подтверждающие химическую активность данных веществ в определенных температурных интервалах и рН среды:

  • исследование действия перекиси водорода как катализатора на сырую и вареную морковь;
  • воздействие на мясо (обработанное термически и сырое), картофель и прочие продукты.

Ферменты в организме человека

Каждый школьник, достаточно образованный и перешедший рубеж среднего звена образования, знает, как называются биологические катализаторы. Ферменты в организме имеют строго специфическую специализацию. Поэтому для каждого процесса можно назвать свое катализирующее вещество.

биологические катализаторы белковой природы это

Так, все ферменты организма можно разделить на несколько групп:

  • оксидоредуктазы, например, каталаза или алкогольдегидрогеназа;
  • трансферазы - кеназа;
  • гидролазы, важные для пищеварения: пепсин, амилаза, липопротеинлипаза, эстераза и другие;
  • лигазы, например, ДНК-полимераза;
  • изомеразы;
  • лиазы.

Так как все эти соединения имеют белковую природу, а также комплекс витаминов в составе, то повышение температуры тела чревато денатурацией структуры, а следовательно, прекращением всех биохимических реакций. В этом случае организм близок к смерти. Поэтому высокую температуру тела обязательно сбивают во время болезни.

Использование белковых катализаторов в промышленности

Часто ферменты используются в разных отраслях промышленности:

  • химической;
  • текстильной;
  • пищевой.

На полках магазинов можно видеть чистящие средства и стиральные порошки с содержанием энзимов - это и есть ферменты, улучшающие качество стирки белья.

как называются биологические катализаторы

Для чего нужны биологические катализаторы?

Переоценить их значение сложно. Ведь они не только позволяют живым организмам жить, дышать, питаться, осуществлять процессы метаболизма, но и дают нам возможность уничтожать промышленные отходы, получать лекарства, защищать и оберегать свое здоровье и состояние окружающей среды.

fb.ru

Катализатор | Химическая энциклопедия

Катализатор

Одно из наиболее эффективных воздействий на химические реакции – это применение катализатора. Катализаторы – это вещества, ускоряющие химические реакции. Присутствие катализаторов изменяет скорость реакции в тысячи и даже миллионы раз. Катализаторы активно участвуют в химической реакции, но в отличие от реагентов в конце ее остаются неизменными.

Катализаторы – это вещества, которые изменяют скорость протекания реакции, но сами не расходуются в ходе реакции и не входят в состав конечных продуктов.

Важной характеристикой каталитической реакции (катализа) является однородность или неоднородность катализатора и реагирующих веществ. Различают гомогенные и гетерогенные каталитические процессы. При гомогенном (однородном) катализе между реагирующими веществами и катализатором отсутствует поверхность раздела. В данном случае катализ осуществляется через образование неустойчивых промежуточных продуктов.

Например, вещество A должно вступить в реакцию с веществом B. Однако для начала реакции необходимо сильное нагревание, и реакция далее протекает медленно. Тогда подбирают катализатор с таким расчетом, чтобы он с веществом A образовал активное промежуточное соединение, способное потом энергично реагировать с веществом B:

A + Кат. = A ∙ Кат. A ∙ Кат. + B = AB ∙ Кат. Кат. A + B = AB

Процессы, в которых катализатор и катализируемые вещества находятся в разных агрегатных состояниях, относятся к гетерогенному (неоднородному) катализу. При адсорбции на поверхности катализатора газообразных или жидких реагентов ослабляются химические связи, возрастает способность этих веществ к взаимодействию.

Ускоряющее действие катализатора заключается в понижении энергии активации основной реакции. Каждый из промежуточных процессов с участием катализатора протекает с меньшей энергией активации, чем некатализируемая реакция. Катализ открывает иной пут протекания химической реакции от исходных веществ к продуктам реакции.

Опыт показывает, что катализаторы строго специфичны для конкретных реакций. Например, в реакции:

N2+3h3 =Fe 2Nh4

Катализатором является металлическое железо, а в реакции окисления оксида серы(IV) в оксид серы(VI) катализатор – оксид ванадия(V) V2O5. Часто в качестве катализаторов используют платину, никель, палладий, оксид алюминия. Для ускорения процесса разложения пероксида водорода в качестве катализатора применяют оксид марганца(IV). Если в стакан с раствором пероксида водорода добавить немного оксида марганца(IV), сразу происходит бурное вспенивание жидкости в результате выделения кислорода.

Катализатором реакции взаимодействия алюминия и йода является обычная вода. Если к смеси алюминия и йода прилить воду, то вещества в смеси бурно реагируют.

Существуют вещества, способные замедлять химическую реакцию – осуществлять так называемый отрицательный катализ. Их называют ингибиторами. Такие вещества применяют при необходимости замедлит некоторые процессы, например коррозию металлов, окисление сульфидов при хранении и др. Вам необходимо включить JavaScript, чтобы проголосовать

abouthist.net

Урок 6. Ферменты – биологические катализаторы, их свойства

Ферменты – биологические катализаторы, почти все ферменты являются белками (хотя недавно выяснилось, что некоторые реакции катализируют РНК, а не белки). Вещества, участвующие в реакции, которую катализирует фермент, называются субстратами. От обычных катализаторов ферменты отличает несколько особенностей.

Во-первых, ферменты обладают очень высокой специфичностью: они узнают такие небольшие отличия в структуре веществ, как наличие лишней –СН2-группы, умеют различать цис- и транс-изомеры, D- и L-изомеры. Некоторые ферменты, однако, обладают не очень строгой специфичностью – так, фермент желудочного сока пепсин расщепляет пептидные связи, образованные как ароматическими, так и кислыми аминокислотами (заметим, что для выполнения биологической функции пепсину и не нужна высокая специфичность: наоборот, чем больше разных пептидных связей он расщепит, тем лучше переварится пища в желудке).

Во-вторых, ферменты обладают чрезвычайно высокой эффективностью, значительно превосходящей эффективность обычных катализаторов. Так, одна молекула фермента каталазы, ускоряющего разложение перекиси водорода на воду и кислород, успевает расщепить 200 000 молекул субстрата за одну секунду.

В-третьих, ферменты теряют свою активность при повышении температуры. Мы говорили в уроке 5, что при высоких температурах белки подвергаются денатурации: они теряют свою природную конформацию и уже не могут выполнять биологические функции.

Наконец, в четвертых, многие (хотя и не все) ферменты подвергаются регуляции – в зависимости от нужд клетки и организма их активность может возрастать, а может и уменьшаться.

Ферменты давно используются в медицине. Так, во многих клиниках проводят измерение активности различных форм ферментов лактатдегидрогеназы и трансаминазы – их соотношение изменяется при таких болезнях как инфаркт миокарда, поражения печени, мышечные дистрофии; фермент стрептокиназу врачи применяют для рассасывания тромбов; ферменты трипсин и коллагеназа используются для рассасывания рубцов. В биотехнологии ферменты применяются еще шире. Амилаза, расщепляющая крахмал, используется в пивоваренной, хлебопекарной (облегчает переработку крахмала дрожжами), текстильной и кожевенной промышленности (умягчает сырье). Различные протеазы, расщепляющие белки, применяют в пищевой (делают старое мясо более мягким, сворачивают молоко в сыроварении) и кожевенной промышленности. В пищевой промышленности используются инвертаза (расщепляет сахарозу), глюкоизомераза (изомеризует глюкозу в более сладкую фруктозу), трансглютаминаза (сшивает белки, улучшая структуру продукта), липазы (расщепляют липиды, применяются для получения более ценных пищевых жиров), пектинметилэстераза (осветляет фруктовые соки) и т. д. Протеазы и липазы часто добавляют в стиральные порошки для лучшего удаления грязи.

Участок молекулы фермента, который непосредственно взаимодействует с субстратом, называется активным центром фермента. В активном центре можно выделить две области: субстрат-связывающий участок и каталитический участок. Субстрат-связывающий участок определяет специфичность узнавания ферментом своего субстрата, а каталитический непосредственно производит химическое превращение субстрата в продукт. В активном центре оказываются сближенными аминокислотные остатки, далеко удаленные друг от друга в первичной структуре. Активный центр занимает небольшую часть от всей белковой глобулы фермента, все остальные аминокислоты нужны для поддержания аминокислотных остатков активного центра в нужном положении.

Рис. 1. Активный центр фермента лизоцима в составе его третичной структуры (А) и первичной структуры (В). Аминокислотные остатки, входящие в активный центр, выделены цветом

Высокая специфичность ферментов объясняется тем, что субстрат подходит к их активному центру как ключ к замку.

Модель 1. Ферментативный катализ

В молекуле субстрата могут быть положительно и отрицательно заряженные группы, поляризованные группы с частичными зарядами, а также гидрофобные зоны. Соответственно, в субстрат-связывающем участке активного центра напротив положительно заряженных групп субстрата будут располагаться отрицательно заряженные группы фермента, напротив отрицательно заряженных – положительно заряженные, а напротив гидрофобных фрагментов субстрата – гидрофобные аминокислотные остатки. Таким образом, связывание фермента с субстратом происходит благодаря ионным, водородным и гидрофобным взаимодействиям.

В настоящее время детально изучен механизм работы далеко не всех ферментов. Одним из наиболее изученных является фермент поджелудочной железы α-химотрипсин, расщепляющий белки пищи в двенадцатиперстной кишке и тонком кишечнике. Он гидролизует пептидные связи, расположенные около ароматических аминокислот субстрата. В каталитическом участке активного центра α-химотрипсина находятся три аминокислотных остатка: серин, гистидин и аспарагиновая кислота. В третичной структуре фермента они тесно прилегают друг другу, но в первичной структуре расположены далеко: гистидин является 57-й аминокислотой с N-конца, аспартат – 102-й, серин – 195-й.

Рис. 2. Активный центр α-химотрипсина. Красным показана молекула субстрата

В начале процесса катализа в активный центр фермента заходит субстрат, для нас важна одна-единственная пептидная связь в его молекуле (этап 1 на рисунке). Появление субстрата вызывает перемещение иона Н+ от серина на гистидин, а образовавшийся анион серина немедленно атакует карбонильный атом углерода в пептидной связи субстрата (этап 2 на рисунке). Образуется очень короткоживущее промежуточное соединение, в котором атом углерода субстрата связан с двумя атомами кислорода, одним атомом азота и одни атомом углерода. Это соединение быстро распадается, причем одна его половинка остается ковалентно связанной с остатком серина, а другая забирает ион Н+ от гистидина и становится полностью свободной (этап 3 на рисунке). Такое ковалентное соединение фермента с частью субстрата называется ацил-фермент. Затем часть субстрата со свободной аминогруппой уходит из активного центра (этап 4 на рисунке). Для завершения реакции необходимо гидролизовать ацил-фермент, и в активный центр химотрипсина приходит молекула воды (этап 5 на рисунке). Опять образуется короткоживущий промежуточный комплекс, в котором атом углерода субстрата связан с тремя атомами кислорода и одни атомом углерода (этап 6 на рисунке). Этот комплекс также быстро распадается, при этом ковалентная связь между остатком субстрата и фермента разрывается (этап 7 на рисунке). Наконец, остаток субстрата покидает активный центр фермента, и он возвращается в исходное состояние (этап 8 на рисунке). В результате реакция гидролиза пептидной связи протекает через множество промежуточных этапов. Без фермента реакция идет очень медленно, а каждая из промежуточных стадий, протекающих в активном центре фермента, идет быстро, в итоге фермент резко ускоряет протекание реакции.

Скорость химической реакции – это изменение концентрации продукта в единицу времени. Еще в 1913 году Михаелис и Ментен вывели уравнение зависимости скорости простейшей ферментативной реакции S → P от концентрации субстрата. Чтобы лучше понять биохимическую основу этого математического уравнения, представим себе условия протекания ферментативной реакции, когда субстрата очень мало. Большинство молекул фермента при этом не связано с субстратом, они «бродят без работы», и скорость реакции мала. Если повышать концентрацию субстрата, то скорость реакции растет почти линейно. Но бесконечно скорость реакции повышаться не может: при очень большой концентрации субстрата все молекулы фермента окажутся связаны с ним – весь фермент перейдет в фермент-субстратный комплекс. Скорость реакции уже не будет расти при повышении концентрации, и кривая скорости будет стремиться к асимптоте. Математически это уравнение выглядит так:

где V – скорость реакции, [S] – концентрация субстрата, Vмакс – максимальная скорость реакции, достигаемая при бесконечной концентрации субстрата, Kм – константа Михаелиса.

Рис. 3. Изменение скорости ферментативной реакции в зависимости от концентрации субстрата согласно уравнению Михаелиса–Ментен

Vмакс и KМ – это показатели индивидуальных свойств фермента – его сродства к субстрату и способности превращать субстрат в продукт. Легко видеть, что KМ численно равна концентрации субстрата при скорости, равной половине максимальной.

Скорость ферментативной реакции может быть замедлена специальными веществами – ингибиторами. Некоторые ингибиторы ферментов – смертельные яды для человека, тогда как другие являются ценными лекарствами. К таким лекарствам относятся, например, сульфаниламидные препараты. Многим видам болезнетворных бактерий для роста необходима пара-аминобензойная кислота h3N–C6h5–COOH. Они используют ее для синтеза более сложного соединения – фолиевой кислоты, важного витамина. Сульфаниламид h3N–C6h5–SO3H (бытовое название – стрептоцид) и его производные похожи на пара-аминобензойную кислоту, они связываются с ферментом, участвующим в синтезе фолиевой кислоты, занимая субстрат-связывающий участок активного центра. Но они не могут вступить в реакцию, которую катализирует фермент, а просто сидят в активном центре и не дают вступить в реакцию истинному субстрату – пара-аминобензойной кислоте. В результате бактерия не может синтезировать необходимый ей витамин. Человек не имеет этого фермента, он должен получать фолиевую кислоту с пищей, поэтому для человека сульфаниламидные препараты безвредны (однако они угнетают полезную микрофлору кишечника, так что принимать их следует только по назначению врача).

Сульфаниламид как бы конкурирует с пара-аминобензойной кислотой за активный центр фермента, поэтому такие ингибиторы получили название конкурентных. В присутствии конкурентных ингибиторов Vмакс не меняется – ведь при очень большой концентрации субстрат «победит» в конкуренции с ингибитором. Другой класс ингибиторов – неконкурентные – связываются не с активным центром фермента, а с другим его участком. Они не влияют на связывание субстрата, но уменьшают максимальную скорость, изменяя конформацию молекулы фермента. И конкурентные, и неконкурентные ингибиторы связываются с ферментом обратимо.

Модель 2. Ингибирование ферментативных реакций

Существует еще один класс ингибиторов – необратимые. Они ковалентно связываются с молекулой фермента. Так, антибиотик пенициллин необратимо связывается с микробным ферментом гликопептид-транспептидазой, синтезирующим муреин (см. урок 3), и нарушает синтез клеточной стенки. Целый ряд мощных нервно-паралитических боевых отравляющих веществ (зарин, зоман, V-газы) необратимо ингибируют фермент ацетилхолин-эстеразу, необходимый для расслабления скелетных мышц. В результате отравления этими веществами дыхание становится невозможным из-за спазма дыхательных мышц, и наступает смерть – смертельная доза для человека вещества VX составляет всего 0,0004 г.

В клетке активность многих ферментов регулируется. Одним из наиболее распространенных механизмов регуляции активности ферментов является аллостерическая регуляция. У ферментов, регулируемых таким способом, кроме активного центра имеется еще один очень важный участок – аллостерический центр. Он обратимо связывает специальные регуляторы, обычно это небольшие молекулы массой менее 1 килодальтона. После связывания регулятора конформация всей белковой глобулы изменяется, и фермент изменяет эффективность своей работы.

Рис. 4. Схема действия аллостерического ингибитора на фермент

Одни аллостерические регуляторы ингибируют активность фермента, тогда как другие активируют ее. Некоторые ферменты имеют несколько аллостерических центров.

Аллостерическая регуляция часто используется в обмене веществ для ингибирования конечным продуктом. Представьте себе, что в организме синтезируется некоторое вещество Z, концентрацию которого необходимо поддерживать на постоянном уровне. Это вещество синтезируется из предшественника А в несколько стадий:

A → B → C → D → Z. Первый фермент этого пути, превращающий A → B, аллостерически ингибируется конечным продуктом Z. Если концентрация Z повысится выше нормы, то активность первого фермента в цепи реакций окажется угнетенной, выработка продукта сократится, и его концентрация вскоре снизится до нормы. Если же концентрация Z сильно понизится, то аллостерическое ингибирование фермента исчезнет, он заработает в полную силу, и вскоре концентрация продукта восстановится до нормального уровня.

Другой способ регуляции – кооперативность – похожа по механизму на аллостерию. Разберем явление кооперативности на примере гемоглобина – хотя этот кислород-связывающий белок и не является ферментом, принципы остаются теми же. График зависимости насыщения гемоглобина от парциального давления кислорода имеет S-образную форму и сильно отличается от кривой Михаелиса. При низкой концентрации кислорода график насыщения гемоглобина идет очень полого. При увеличении концентрации он круто взмывает вверх: белок, связывающий кислород в соответствии с уравнением Михаелиса, не смог бы обеспечить такую крутизну. Наконец, последний участок этой кривой асимптотически приближается к полному насыщению.

Такое необычное поведение объясняется просто. Гемоглобин состоит из четырех субъединиц, каждая из которых способна связывать молекулу О2. При очень низкой концентрации кислорода все субъединицы гемоглобина находятся в свободном состоянии. Если концентрацию О2 немного повысить, то сперва его связывание пойдет с большим трудом. Однако когда первая субъединица все-таки свяжет кислород, то ее конформация изменится, и это изменение передастся на соседние субъединицы. Они будут связывать кислород легче, чем первая, и кривая связывания стремительно пойдет вверх. Такое повышение сродства к субстрату у других субъединиц после связывания его первой субъединицей называется положительной кооперативностью. Механизм этого явления состоит в том, что изменение конформации одной субъединицы белка вызывает изменение пространственной структуры всей белковой молекулы.

Рис. 5. Зависимость степени насыщения кислородом гемоглобина и воображаемого белка, не обладающего кооперативностью, от парциального давления О2

Физиологическое значение этого свойства гемоглобина огромно. Парциальное давление кислорода в крови, выходящей из легких, составляет около 100 мм рт. ст., в этих условиях гемоглобин насыщен на 98 %. В тканевой жидкости, омывающей капилляры, парциальное давление О2 может понизиться до 20 мм рт. ст., в этих условиях гемоглобин будет насыщен кислородом на 32 %. В итоге 66 % (98 % – 32 %) от общего количества гемоглобина участвует в переносе кислорода. Если бы перенос кислорода осуществлял некий воображаемый белок, не обладающий кооперативностью, то при изменении парциального давления со 100 мм рт. ст. до 20 мм рт. ст. он изменил бы свою насыщенность кислородом только на 38 %. Таким образом, кооперативность повышает эффективность работы гемоглобина примерно в 1,7 раза.

Еще одним важнейшим механизмом регуляции активности белков является ковалентная модификация. Белки могут подвергаться различным химическим изменениям. Очень распростран ограниченный протеолиз белковых молекул. Многие пищеварительные ферменты синтезируются в форме длинных предшественников. Так, поджелудочная железа секретирует в просвет двенадцатиперстной кишки не активные ферменты трипсин и химотрипсин, а их предшественники – трипсиноген и химотрипсиноген. Трипсиноген длиннее трипсина на 6 аминокислотных остатков с N-конца. Фермент кишечника энтеропептидаза отщепляет этот лишний пептид и превращает неактивный трипсиноген в активный трипсин.

Многие белковые гормоны также синтезируются в виде более длинных предшественников. Так, на рибосомах поджелудочной железы синтезируется предшественник гормона инсулина – проинсулин. Отщепление лишних аминокислот и образование зрелого инсулина происходит в секреторных пузырьках клеток поджелудочной железы.

Ограниченный протеолиз играет важную роль в регуляции свертывания крови. Для образования кровяного сгустка необходимо, чтобы растворимый белок фибриноген превратился в нерастворимый фибрин. Этот процесс становится возможным после ограниченного протеолиза фибрина специальным ферментом – тромбином. Сам тромбин тоже образуется из неактивного предшественника – протромбина – с помощью ограниченного протеолиза. Активация свертывания крови – очень сложный процесс, включающий в себя целый каскад последовательно действующих протеаз.

Запуск самой первой протеазы происходит при повреждении стенки кровеносного сосуда. Существует два механизма активации этого каскада реакций. При внутреннем механизме одна из неактивных протеаз вступает в контакт с белком соединительной ткани коллагеном (что возможно лишь при повреждении стенки сосуда), ее конформация меняется, она переходит в активную форму и запускает весь последующий каскад реакций. При внешнем механизме другая неактивная протеаза соединяется с одним из белков, освобождающимся из поврежденных клеток стенки кровеносного сосуда, и также переходит в активную форму.

Другим распространенным видом ковалентной модификации является фосфорилирование белков – присоединение остатка фосфорной кислоты из молекулы АТФ к одному из аминокислотных остатков белковой глобулы. Целый ряд гормонов оказывают свое физиологическое действие через фосфорилирование соответствующих белков. Рассмотрим действие двух из них – адреналина и глюкагона. Оба гормона вызывают повышение концентрации глюкозы в крови. Эффективность их действия поразительна: одна молекула гормона вызывает выброс в кровь до 100 миллионов молекул глюкозы.

Глюкоза запасается в клетках человека в виде полимера – гликогена (см. урок 3). Фермент гликогенфосфорилиза катализирует распад гликогена до глюкозо-6-фосфата, который затем превращается в глюкозу, а свободная глюкоза поступает в кровь. Самой медленной реакцией является первая, гликогенфосфорилазная, она и ограничивает скорость всего процесса. В спокойном состоянии потребность организма в глюкозе значительно меньше, чем при стрессе или интенсивной мышечной нагрузке, поэтому в норме фермент гликогенфосфорилаза малоактивен, а под действием адреналина и глюкагона резко активируется.

На поверхности мембраны клеток печени, которые запасают гликоген, есть белки-рецепторы, способные связывать гормон. Каждому гормону соответствуют свои рецепторы. Связывание гормона с рецептором происходит за счет нековалентных взаимодействий (электростатических, водородных, гидрофобных). Как только адреналин свяжется с рецептором, конформация рецептора изменится, и он делается способным активировать особый мембранный фермент – аденилатциклазу. Рецептор, не связанный с гормоном, не может активировать этот фермент (на самом деле активация аденилатциклазы протекает гораздо сложнее, чем описано здесь).

Фермент аденилатциклаза катализирует реакцию превращения АТФ в циклический аденозинмонофосфат (цАМФ) – важнейший внутриклеточный регулятор многих биохимических процессов. цАМФ путем диффузии идет в цитоплазму и аллостерически активирует специальный фермент протеинкиназу. Протеинкиназами называют ферменты, которые переносят остаток фосфата от АТФ на белок-мишень: Б–ОН + АТФ → Б–ОРО3Н– + АДФ, где Б – белок-мишень. В клетке имеется множество различных протеинкиназ, каждая из них специфически фосфорилирует только свои белки-субстраты и не действует на другие. Некоторые протеникиназы присоединяют фосфат к остаткам серина и треонина, другие же к остаткам тирозина. цАМФ активирует одну-единственную из них, которая так и называется: цАМФ-зависимая протеинкиназа; она фосфорилирует свои мишени по остаткам серина и треонина.

Среди белков-мишеней цАМФ-зависимой протеинкиназы есть особый фермент – киназа фосфорилазы. В нефосфорилированном состоянии она неактивна, а в фосфорилированном – активна. Киназа фосфорилазы, как явствует из названия, сама фосфорилирует белок-мишень. Этой мишенью является фермент гликогенфосфорилаза. После фосфорилирования гликогенфосфорилаза переходит из малоактивной в высокоактивную форму, и расщепляет гликоген.

Рис. 6. Каскад ферментов, активирующийся адреналином и приводящий к освобождению глюкозы. Красным цветом обозначены неактивные формы ферментов, желтым – активные. Голубыми стрелками обозначена активация ферментов путем фосфорилирования

Большое усиление слабого гормонального сигнала достигается за счет многоступенчатости процесса, причем на каждой следующей стадии в работу каскада вовлекается все большее и большее количество белка.

Рис. 7. Усиление сигнала от рецептора адреналина к конечному ферменту каскада

Весь этот каскад активируется под действием адреналина за считанные секунды. Возвращение компонентов системы в исходное состояние после прекращения подачи адреналина происходит с помощью ферментов, отщепляющих фосфат с молекул белков – протеинфосфатаз. цАМФ же расщепляется ферментом фосфодиэстеразой.

В разных клетках цАМФ-зависимая протеинкиназа фосфорилирует разные белки-мишени, и физиологический ответ получается разный. Через цАМФ действуют, кроме адреналина и глюкагона, такие гормоны гипофиза как адренокортикотропный, тиреотропный и гонадотропный; антидиуретический гормон, препятствующий выведению воды из организма; тканевой гормон простагландин Е2, способствующий развитию воспалительной реакции.

Некоторые протеинкиназы фосфорилируют в белках-мишенях не серин и треонин, а тирозин. Многие из этих тирозиновых протеинкиназ являются рецепторами особых белков – факторов роста (их еще иногда называют «гормонами клеточного деления»). Одним из таких белков является соматомедин С. Гипофизарный гормон роста оказывает свое физиологическое действие опосредованно: он стимулирует выделение печенью соматомедина С. Этот белок активирует деление клеток соединительной ткани фибробластов, рост мышечной ткани, рост хрящей. Другим веществом, ускоряющим деление клеток, является фактор роста эпидермиса. Он в больших количествах содержится в слюне, так что животные зализывают раны не только из-за бактерицидного действия слюны, но и потому, что она ускоряет рост поврежденного эпителия. Рецепторы обоих названных факторов роста являются тирозиновыми протеинкиназами.

После активации тирозиновых протеинкиназ включается каскад реакций, приводящий к запуску удвоения ДНК, а потом и клеточного деления. В раковых клетках нарушается регуляция этих процессов. Некоторые опухолевые клетки начинают сами выделять факторы роста, которые активируют их же собственное деление. У других злокачественно перерожденных клеток происходят мутации в генах рецепторов факторов роста, и в результате они становятся активными без всякого внешнего сигнала. В итоге клетка начинает бесконтрольно делится, и образуется раковая опухоль. Некоторые современные противоопухолевые лекарственные препараты (эрлотиниб, иматиниб) специфически угнетают ферментативную активность таких «взбесившихся рецепторов» и тормозят рост опухоли.

Краткое содержание урока

Ферменты отличаются от небиологических катализаторов высокой скоростью и специфичностью, а активность некоторых ферментов регулируется клеткой. Активный центр фермента связывается с субстратом по принципу «ключ-замок». Особые вещества – ингибиторы – угнетают активность ферментов, некоторые ингибиторы используются в качестве лекарств, другие являются сильными ядами. Существует несколько физиологических механизмов регуляции активности ферментов, важнейшими из них являются аллостерия, кооперативность и ковалентная модификация.

files.school-collection.edu.ru

Влияние температуры и катализаторов на скорость химических реакций

    Домашняя подготовка. Скорость химической реакции. Единицы измерения скорости реакции. Факторы, влияющие на скорость реакции. Закон действия масс и его математическое выражение. Константа скорости реакции. Скорость реакции в гомогенных и гетерогенных системах. Влияние катализаторов на скорость реакции. Необратимые и обратимые реакции. Химическое равновесие. Константа химического равновесия. Влияние различных факторов на смещение химического равновесия (концентрация, температура, давление). Принцип Ле Шателье. [c.107]     Температура. Согласно классическим представлениям, если исключить влияние катализаторов, скорость химических реакций является функцией температуры и концентрации реагирующих веществ. По известному правилу Вант-Гоффа, повышение температуры на 10 градусов ускоряет реакцию в 2—3 раза. Это правило не является строгим, так как температурный коэффициент скорости реакции меняется с температурой. К. И. Ивановым [35 было показано, что температурный коэффициент окисления углеводородов, равный 2, наблюдается только для 140—150 °С. При температурах ниже 140 °С он во всех случаях гораздо больше, а выше 150°С он меньше. [c.69]

    На скорость химических реакций влияет много факторов природа реагирующих веществ, их концентрация, температура, давление, наличие катализаторов и др. В предложенных задачах необходимо учитывать влияние на скорость реакций только двух факторов — концентрации реагирующих веществ и температуры. Кратко охарактеризуем величины, которыми следует оперировать в процессе решения задач, а также закономерности, определяющие зависимости между этими величинами. [c.53]

    Согласно классическим представлениям, если исключить влияние катализаторов, скорость химических реакций является функцией температуры и концентрации реагирующих веществ. По правилу Ван-Гоффа, повышение температуры на 10 градусов вызывает ускорение реакции в 2—3 раза. [c.92]

    В заключение приведем примеры рассчитанных по алгоритму, приведенному в работе [18], зависимостей максимальной температуры во фронте от константы скорости химической реакции (рис. 3.6), величины адиабатического разогрева смеси (рис. 3.7) ж размера (рис. 3.8) зерна катализатора в условиях, когда величиной эффективной продольной теплопроводности по слою можно пренебречь [19]. Приведенные количественные зависимости согласуются с полученными ранее оценками. Отметим лишь влияние раЗ(Мера зерна катализатора в условиях, когда роль продольного переноса тепла пренебрежимо мала. Как видно из выражения (3.566), [c.94]

    Таким образом, скорость химических реакций зависит ог многих факторов. Рассмотрим более подробно влияние на скорость химической реакции концентрации реагирующих веществ, температуры и катализатора. [c.110]

    Механизм действия катализатора принципиально отличается от влияния температуры на скорость реакции. При повышении температуры скорость реакции возрастает вследствие увеличения концентрации активных молекул за счет поглощения энергии извне. Катализатор источником энергии не является и концентрацию активных молекул изменить не может. Роль катализатора сводится к тому, что в его присутствии энергия активации реакции снижается и, следовательно, скорость реакции возрастает. Так как катализатор снижает энергии активации прямой и обратной реакций на одинаковую величину, то смещения химического равновесия под влиянием катализатора не происходит. [c.120]

    Обсуждая влияние температуры на скорость химических реакций, мы до сих пор интересовались главным образом такими реакциями, в которых происходит образование или разрыв ковалентных связей. По отношению к тому количеству кинетической энергии, которое имеется при физиологических температурах, это сильные связи, и для их образования или разрыва с высокой, достаточной для поддержания жизни скоростью требуется участие катализаторов. Таким образом, речь шла о реакциях, катализируемых ферментами, тех реакциях, которые и составляют в своей совокупности метаболизм . [c.214]

    Среди факторов, ускоряющих окислению масел, особое вначение имеет температура. Согласно классическим представлениям, если исключить влияние катализаторов, скорость химических реакций является функцией температуры и концентрации реагирующих веществ. По известному правилу Вант-Гоффа, повышение температуры на 10° вызывает ускорение реакции в 2—3 раза. Хотя температурный коэффициент скорости реакции меняется с изменением тем- [c.55]

    В этом отношении характерно влияние температуры на протекание гетерогенного процесса в системе Г —Т (пористый катализатор). При низких температурах, как правило, процесс лимитируется скоростью химической реакции. Скорость подвода вещества к внешней и внутренней поверхности раздела фаз (кривые 3 и 2 в зоне I на рис. 5.10) может существенно превосходить скорость химической реакции (кривая 1 в зоне /). С ростом температуры константа скорости химической реакции растет по экспоненциальному закону с показателем степени от 0,5 (для кнудсеновской диффузии) до 1,8 (для молекулярной диффузии), Коэффициент конвективной диффузии и ее скорость при подводе реагентов к внешней поверхности катализатора практически не зависят от температуры (линия 3). Таким образом, темп роста константы скорости реакции существенно выше, чем увеличение коэффициентов диффузии. А это означает, что при некоторой температуре стадия внутренней диффузии станет более медленной по сравнению с химической реакцией и процесс перейдет постепенно во внутридиффузионную область, а его скорость будет ограничиваться скоростью внутренней диффузии (кривая 2 в зоне II). [c.86]

    Влияние катализаторов. Сильное влияние на скорость химической реакции оказывают некоторые вещества — катализаторы. Катализаторы, образуя с реагентами промежуточные продукты, повышают скорости химических реакций на много порядков, выделяясь в конце реакции в неизменном химическом состоянии. Так, например, в смеси Нг и О2 при нормальной температуре скорость реакции образования воды практически равна нулю. Если же ввести в сосуд. [c.529]

    В общем случае скорость химической реакции зависит от времени. Решающее влияние на нее оказывают концентрации реагирующих веществ, температура и катализаторы. Скорость реакции характеризуется количеством вещества, вступающего в реакцию в единицу времени. Такое определение не является точным, поскольку в реакции участвует несколько химических соединений исходные, промежуточные вещества и продукты реакции. Поэтому в химической кинетике принято говорить не о скорости химической реакции вообще, а о скорости по некоторому компоненту. [c.310]

    При Сд = С ) = 1 из формулы (1.6) следует, что 0 = к. Следовательно, константа к выражает собой скорость данной химической реакции при условии, если концентрации исходных веществ равны единице. Эту величину иногда называют удельной скоростью химической реакции. Чем выше к, тем быстрее протекает данная реакция. Константа скорости зависит от природы реагирующих веществ, но не зависит от их концентрации. Температура и катализатор оказывают большое влияние на величину к. [c.12]

    На скорость химической реакции влияют многие факторы концентрация реагирующих веществ, их природа, температура, природа растворителя (если реакция протекает в растворе), присутствие катализаторов, в случае газовых реакций оказывает влияние на скорость и давление. [c.112]

    Теория активации объяснила влияние температуры, концентрации реагирующих веществ и катализаторов на скорость химической реакции, а также позволила установить различия в механизме одно- и двухмолекулярных реакций. [c.128]

    Раздел физической химии, в котором изучается скорость химических реакций и механизм химического взаимодействия, а также влияние на скорость реакций различных факторов (концентрации реагирующих веществ, температуры, давления, света, катализаторов и др.), называется химической кинетикой. [c.82]

    Экспериментальные исследования показывают, что на скорость химических реакций оказывают влияние лишь несколько факторов. Чаще всего приходится иметь дело со следующими четырьмя факторами, от которых зависит скорость реакции концентрацией реагентов, температурой, физическим состоянием реагентов и наличием катализаторов. Рассмотрим сначала эти факторы на качественном уровне, чтобы затем перейти к их более детальному обсуждению в следующих разделах главы. [c.225]

    В теории активации влияние температуры и катализатора на скорость химической реакции описывается следующим уравнением для константы скорости химической реакции  [c.50]

    Влияние катализаторов на скорость реакции. Скорость химической реакции можно увеличить, не повышая температуры, для этого применяют катализаторы. Часто это выгоднее, чем повышать температуру. [c.192]

    Скорость каждой химической реакции зависит как от природы реагирующих веществ, так и от условий, в которых реакция протекает. Важнейшими из этих условий являются концентрация, температура и присутствие катализатора (явление катализа рассмотрено ниже). Природа реагирующих веществ оказывает решающее влияние на скорость химической реакции. Так, например, водород с фтором реагирует очень энергично уже при комнатной температуре, тогда как с бромом значительно медленнее даже при нагревании. [c.90]

    Влияние температуры на скорость химической реакции. . . Влияние температуры на скорость биологических процессов. Завпсн.мость скорости реакции от катализатора. Катали.э гомогсн [c.404]

    Влияние различных факторов на скорость химической реакции. Скорость химической реакции зависит от природы реагирующих веществ, т. е. от их химических и физических свойств. Кроме того, на скорость реакции существенно влияют такие факторы, как концентрация реагирующих веществ, температура, давление, катализатор, интенсивность перемешивания веществ. При проектировании технологического процесса эти параметры выбирают такими, чтобы процесс протекал с максимальной скоростью. [c.229]

    Химической кинетикой называется учение о скорости химических реакций и зависимости ее от различных факторов — концентрации реагирующих веществ, температуры, влияния катализаторов и проч. [c.156]

    ВЛИЯНИЕ ТЕМПЕРАТУРЫ И КАТАЛИЗАТОРОВ НА СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ [c.82]

    Явления радиоактивности целиком подтверждают основной закон материалистической диалектики о вечном движении и изменяемости материи химические элементы не являются абсолютно неизменяемыми. Мы видим, что элементы претерпевают глубокие превращения, в результате которых образуются другие элементы. Однако эти процессы отличаются от обычных химических реакций. При химических явлениях атомы элементов в корне не изменяются все процессы, связанные с химическими реакциями между веществами, протекают во внещних электронных оболочках, а ядра атомов остаются при этом неизменными. Радиоактивный же процесс состоит в распаде атомного ядра. Далее, скорость химических реакций зависит от температуры, присутствия катализаторов и т. д. Наконец, всякий химический процесс в большей или меньшей степени обратим. На течение же радиоактивного процесса не оказывают заметного влияния ни температура, ни давление и т. д. Этот процесс до сих пор считается необратимым. [c.204]

    Хотя положение равновесия не зависит от концентраций исходных веществ, но от этого зависит скорость реакции. Эта зависимость в истории кинетики гомогенных органических реакций (как и вообще в истории химической кинетики) и была изучена в первую очередь. Далее исследователи обратили внимание на то, что скорость реакции зависит и от природы исходных веществ. На третье место можно поставить изучение влияния на скорость реакции среды — растворителя и примесей или добавок, обладающих каталитическим действием, причем и растворитель в некоторых случаях может выступать в роли катализатора. Наконец, позднее всего удалось выяснить природу давно известного влияния температуры на скорость реак- [c.144]

    При проектировании реактора полезно определить фактор эффективности т], представляющий собой отношение скорости реакции Гр, тормозящейся влиянием массо- и теплопередачи, к скорости химической реакции г, протекающей без торможения. Тогда, для того чтобы определить скорость реакции в условиях значительного влияния массо- и теплопереноса, необходимо только умножить величину скорости химической реакции на фактор г . Сначала мы рассмотрим случай, когда температура внутри гранулы катализатора равна температуре на ее периферии, т. е. когда влияние теплопередачи отсутствует. В гл. 4 было показано, что для сферической частицы катализатора отношение скоростей двух указанных выше реакций, которое в этом случае также определяет долю поверхности, доступной для реакции, определяется выражением [c.412]

    Катализатор можно определить как постороннее вещество, твердое, жидкое или газообразное, в присутствии которого реакция идет с измеримой скоростью в таких условиях, в которых она в его отсутствии не идет вовсе, или идет чрезвычайно медленно при этом катализатор не испытывает никакого видимого изменения, или только очень слабое. Влияние катализатора на скорость химической реакции ясно выступает из следующего примера смесь чистого азота и водорода в отношении 1 3 при нагревании в чистом кварцевом сосуде до 1100° С образует лишь следы аммиака, да и те своим появлением обязаны стенкам сосуда, т. е. каталити ческому действию нагретой кварцевой поверхности. Добавление же в сосуд металлов, особенно железа, вызывает образование измеримых количеств аммиака при температуре уже около 500° С. [c.45]

    Вопрос о скорости химических реакций, о влиянии на скорость различных факторов и о механизме реакций — предмет изучения в химической кинетике. Этот раздел химии открывает возможность различными способами изменением температуры, давления, концентраций, введением катализаторов, облучением светом и т. д. — влиять на скорость установления равновесия, на скорость желательных и нежелательных реакций, самопроизвольное течение которых термодинамически возможно. Изучение кинетики процессов дает возможность глубже понять их механизм, без чего нельзя управлять ими. Если определение энергоспособности (АН) и работоспособности (АС) процесса требует только знания энтальпии и свободной энергии образования начальных и конечных веществ при заданных условиях, то скорость процесса зависит не только от того, какие вещества стоят в правой и левой частях равенства она также всегда зависит от переходного состояния (промежуточных продуктов), которые далеко не всегда удается выделить и изучить. Поэтому проблемы кинетики очень сложны. [c.39]

    Показателями прогрессивности технологического процесса в химической промышленности являются скорость и селективность процесса. Повышение скорости химической реакции способствует улучшению технико-экономических показателей процесса производительности труда, фондоотдачи и оборачиваемости оборотных средств. Повышение селективности химического процесса обеспечивает снижение материалоемкости и энергоемкости продукции и в конечном счете приводит к снижению себестоимости производства. На скорость и селективность процесса, как уже отмечалось, существенное влияние оказывают температура, давление, степень конверсии, а также применение катализаторов. [c.38]

    Влияние различных факторов на скорость химической реакции. Скорость химической реакции зависит прежде всего от природы реагирующих веществ, т. е. от их физических и химических свойств. Кроме того, на скорость реакции существенно влияют следующие факторы концентрация взаимодействующих веществ, температура, давление, катализатор, степень перемешивания веществ. [c.46]

    Количественное определение вещества В, участвующего в реакции в качестве катализатора, возможно при соблюдении постоянства концентрации фонового раствора и константы скорости химической реакции регенерирования. Скорость любой реакции регенерирования каталитической природы зависит в значительной степени от температуры, поэтому анализ растворов по каталитическим токам необходимо проводить с учетом влияния температурного фактора. Объем реакционного слоя цА в [c.198]

    Если порядок протекания реакции на поверхности катализатора более высокий, то все приведенные соотношения гораздо сложнее. Большое влияние на характер гетерогенных каталитических реакций оказывает давление реагирующих веществ и их температура. Известно, что при изменении температуры на 10 скорость диффузии изменяется в 1,2 раза, а скорость химической реакции в 3—4 раза. [c.206]

    Скорость химической реакции зависит от концентрации реагирующих веществ и температуры, при которой протекает процесс. Большое влияние на скорость многих химических процессов оказывают катализаторы. [c.123]

    Как уже отмечалось, при больших размерах зерен катализатора, больших скоростях химической реакции, высоком адиабатическом разогреве с.л1ееи возможны ситуации, когда необходимо учитывать процессы переноса внутри пористого зерна катализатора. Это может произойти, например, тогда, когда нарушаются условия (3.10) —(3.11). Существенное влияние на характеристики фронта может оказывать и величина теплопроводности скелета слоя катализатора с увеличе1нием значения максимальная температура во фронте уменьшается. Также уменьшается и скорость движения фронта. [c.93]

    Константа скорости реакций. Как было показано в предыдуш,их главах, равновесное состояние химических реакций остается неизменным во времени, как бы долго ни шло наблюдение за системой. Напротив, подход химической реакции к состоянию равновесия осуществляется во времени. Закономерности течения химических реакций во времени составляют предмет химичех кой кинетики. Одна из задач химической кинетики состоит в количественном описании скорости химической реакции, ее связи с природой реагирующих веществ, температурой, влиянием катализаторов (ускорителей)и ингибиторов(замедлителей). [c.163]

    Влияние температуры на активность ферментов. Согласно закону Ваит-Гоффа скорость химических реакций увеличивается примерно вдвараза при повышении температуры на (О С (коэффициент Q ,). Это прааило справедливо также и для ферментативных реакций, однако только а ограниченной области значений температуры. При повышении температуры свыше 40 — 50 происходит инактивация белкового катализатора из-за тепловой денатурации. Следовательно, ферментативные реакции отличаются от реакций, катализируемых соединениями небелковой природы, наличием температурного оптимума. Причиной быстрого падения активности является высокая величина коэффициента Qio для процесса тепловой денатурации белка. Следует отметить, что ферменты термофильных бактерий имеют весьма высокий температурный оптимум. [c.185]

    Вильгёльми изучал влияние температуры на скорость реакции и, что очень существенно для выяснения каталитической роли кислоты, пытался определить зависимость скорости инверсии от концентрации катализатора, но он не нашел здесь существенных результатов. Заканчивая свою работу, он писал Я должен предоставить химикам решить вопрос о том, окажутся ли полученные формулы применимыми к другим химическим реакциям, а если это окажется именно так, то в какой степени. Во всяком случае, все реакции, в которых принято видеть действие каталитической силы, как мне кажется, принадлежат к этому классу [1]. [c.77]

    Таким образом, ёез введения. дополнительных (Понятий (таких, аж обменная знергия) удалось объяснить аномально высокую энергию ковалентной овязи, а также влияние температуры,. катализатора, электронного строения вещества на скорость химической реакции, не авадя поиятия переходного состояния, активационного барьера, придать физический смысл термину активность . [c.97]

    Большое значение имели исследования дегидрогенизации нормальных парафинов и парафиновых цепей ароматических углеводородов, что позволяет получать а-алкены, алкадиены и стирол. Систематические работы в этом направлении были начаты в 40-х годах А. А. Баландиным (ИОХ АН СССР), Г. Д. Любарским, М. Я. Каганом и С. Я. Пшежецким (Физико-химический институт им. Л. Я. Карпова), Ю. Г. Мамедалиевым (Азербайджанский университет), С. Р. Сергиенко (Институт нефти АН СССР). В результате были найдены эффективные катализаторы дегидрогенизации, установлено влияние температуры, объемной скорости и других параметров реакции, достигнуты максимально возможные выходы диенов из алкенов [9, с. 40]. [c.77]

chem21.info

Роль катализатора в химической реакции

Home  / Публикации / Статьи / ТЕОРИЯ ХИМИЧЕСКИХ РЕАКЦИЙ / Роль катализатора в химической реакции

Существующее до сих пор определение катализатора (Катализаторами называют вещества, увеличивающие скорость реакции. Катализатор проводит реакцию по пути, требующему меньшей энергии активации) не объясняет явление, а только регистрирует внешнее событие. Наше определение  помогает понять природу химических реакций и химической связи, физический  смысл явления катализа.

Условно катализаторы можно разбить на две группы.

К первой группе относятся вещества, которые в условиях реакции дают значительно больше активных частиц ведущих цепной процесс. Наглядные примеры щелочной и кислотный гидролиз сложных эфиров.

Ко второй группе относятся катализаторы, увеличивающие концентрацию промежуточного соединения. Эти катализаторы образуют комплекс с обеими исходными насыщенными молекулами и электронная изомеризация протекает через промежуточное образование химических связей с катализатором.

AB + K → ABK

ABK + CD → ABKCD

ABKCD → AC + BD + K

где AB и CD являются реагирующими веществами.

Ускорение реакции (каталитическое действие вещества) может быть объяснено следующим образом. В отсутствии  катализатора промежуточным соединением реакции является AB-CD, тогда как в присутствии катализатора - AB-K-CD. Скорость реакции в обоих случаях пропорциональна концентрации промежуточного соединения. Соотношение же между AB-CD (без катализатора) и AB-K-CD будет определяться энергией связи AB-CD и AB-K-CD.

Энергия связи обеих молекул с катализатором гораздо выше, чем их энергия связи друг с другом, поэтому концентрация промежуточных соединений с катализатором гораздо выше, следовательно, выше и скорость реакции.

Такой механизм действия катализатора типичен для биологических систем, в которых катализаторами обычно являются ферменты (энзимы), объединяющие вступающие в реакции молекулы в своих центрах.

Роль химической активации также возрастает с выигрышем энергии в ходе реакции, которая также идет на разрыв слабых связей, что позволяет понять физический смысл правил Семенова - Поляни.

Т.О., механизмы действия катализатора это :

  1. увеличение концентрации  активных частиц в реакционной смеси;
  2. образование промежуточных соединений с обоими из реагентов реакции;
  3. химическая активация.

Как правило, в каталитической реакции присутствуют несколько механизмов.

itchem.ru

Описание явления катализа

Катализ (от греч. κατάλυσις, восходит к καταλύειν — разрушение) — явление изменения скорости химической или биохимической реакции в присутствии веществ, количество и состояние которых в ходе реакции не изменяются (катализаторов).

Термин «катализ» был введён в 1835 году шведским учёным Йёнсом Якобом Берцелиусом.

Для большинства химических процессов немаловажную роль играет скорость их протекания. Одним из широко применяемых методов управления скоростью химической реакции является использование катализаторов. Катализаторами называют вещества, которые изменяют скорость химической реакции, но в результате реакции не расходуются. «Отрицательные катализаторы» — вещества, которые понижают скорость химической реакции, но в процессе реакции не расходуются, — называют ингибиторами. Сам процесс влияния катализатора на скорость химической реакции называют катализом.

Катализ в химииФото: Horia Varlan

В зависимости от того, в одинаковых или различных агрегатных состояниях находятся катализатор и реагирующие вещества, различают гомогенный и гетерогенный катализ. При гомогенном катализе катализатор находится в том же агрегатном состоянии, что и реагенты. Если катализатор находится в другом агрегатном состоянии, чем реагенты, то это гетерогенный катализ. Примером гетерогенного катализа является гидрогенизация непредельных жиров на никелевом катализаторе в процессе получения маргарина. Причины изменения скорости химической реакции в присутствии катализатора обычно связывают с предположением, что в этом случае реакция проходит по принципиально иному механизму, чем в отсутствие катализатора. Для многих реакций экспериментально было подтверждено образование в процессе реакции промежуточных продуктов с участием катализатора. Катализатор (обозначим его К) очень быстро вступает во взаимодействие с одним из реагентов (обозначим его А) с образованием неустойчивого и химически активного промежуточного соединения АК, которое в свою очередь вступает во взаимодействие с реагентом В с образованием конечного продукта АВ.

Явление катализа распространено в природе (большинство процессов, происходящих в живых организмах, являются каталитическими) и широко используется в технике (в нефтепереработке и нефтехимии, в производстве серной кислоты, аммиака, азотной кислоты и др.). Большая часть всех промышленных реакций — это каталитические.

Существует целый ряд веществ, называемых каталитическими ядами, наличие которых в малых количествах на несколько порядков снижает или полностью подавляет активность катализатора. Действие каталитических ядов — уничтожение активности катализатора — называют каталитическим отравлением. Отсюда ясно, почему катализатор после окончания реакции остается количественно и химически неизменным. В качестве примера каталитических ядов можно привести соединения мышьяка, ртути, свинца, цианистые соединения, к которым особенно чувствительны платиновые катализаторы. В производственных условиях реагирующие вещества подвергаются очистке от каталитических ядов, а уже отравленные катализаторы регенерируют. Однако имеются и такие вещества, которые усиливают действие катализаторов данной реакции, хотя сами катализаторами не являются. Эти вещества называются промоторами (промотирование платиновых катализаторов добавками железа, алюминия и др.).

Удивительным в явлении катализа является то обстоятельство, что катализаторы, активно участвуя в реакции, сами в итоге не изменяются. Другими словами, катализаторы не расходуются в ходе химической реакции. Поскольку катализатор способен многократно участвовать в промежуточных химических взаимодействиях с реагентами, его часто берут в небольшом количестве - значительно меньшем по сравнению с реагентами.

В качестве катализаторов часто выступают обычные кислоты, основания, оксиды металлов или сами металлы. Но бывают и сложные катализаторы, поиск и приготовление которых требуют большого труда.

Различают положительный катализ (ускорение реакций) и отрицательный катализ (замедление реакций). Обычно термин «катализ» относят именно к положительному катализу, а отрицательный называют ингибированием. Соответственно «отрицательные катализаторы» называются ингибиторами.

Основные принципы катализа

Катализатор изменяет механизм реакции на энергетически более выгодный, то есть снижает энергию активации. Катализатор образует с молекулой одного из реагентов промежуточное соединение, в котором ослаблены химические связи. Это облегчает его реакцию со вторым реагентом. Важно отметить, что катализаторы ускоряют обратимые реакции, как в прямом, так и в обратном направлениях.



biofile.ru

Персональный сайт - 2.3

2.3. Определение катализа. Виды катализа. Хемосорбция и образование промежуточного активированного комплекса. Энергия активации каталитической реакции. Катализ и равновесие. Применение катализа.

Катализ – явление возбуждения химических реакций специальными веществами – катализаторами. Катализатор многократно вступает в промежуточное химическое взаимодействие с веществами, участвующими в реакции и восстанавливает свой состав после каждого цикла промежуточных взаимодействий.

Гомогенный катализ – реагирующие вещества и катализатор образуют одну фазу.

Гетерогенный катализ – вещества и катализатор находятся в разных фазах.

Микрогетерогенный катализ занимает промежуточное место между гомогенным и гетерогенным катализами. Катализатор – большие полимерные молекулы. Для взаимодействующих на них небольших молекул они подобны гетерогенным частицам, но образуют с реагентами одну фазу. В эту группу входят ферментативные реакции, в которых катализатор (фермент) – крупные белковые молекулы сложного состава и строения. Поэтому его называют и ферментативным катализом.

Химическое превращение протекает через образование активного комплекса, обладающего избыточной энергией. Ее достаточно для перестройки новых веществ – продуктов реакции. Изменение энергии системы при химическом взаимодействии по реакционному пути(1).

  

А – активированный комплекс

К –промежуточное соединение с катализатором

Е0, Ек – энергии исходных веществ и продуктов

Е1, Е2 – энергии активации превращения прямом и обратном направлениях

∆Н – изменение энергии в результате превращения (тепловой эффект).

Но не все молекулы обладают достаточной энергией для образования активного комплекса – только те, энергия которых превышает энергию активации Е1. Если необходимая энергия Е1 велика, то реакция практически не протекает.

Катализатор открывает новый реакционный путь, благодаря тому, что вступает в химическое взаимодействие с образованием активированного комплекса с меньшей энергией, чем требуется для образования активированного комплекса без катализатора. Промежуточное соединение, в которое входит катализатор, превращается далее в продукты через другой активированный комплекс, но тоже с меньшей энергией. После второго этапа реакции катализатор восстанавливает свой химический состав и его компоненты не входят в состав продуктов. И хотя реакционный путь удлиняется, становится стадийным, уменьшение энергии активированного комплекса приводит к увеличению скорости реакции (2).

Особый интерес к катализу проявился в период развития промышленной химии, так как возможность ускорять химические реакции в нужном направлении без расхода энергии и по существу без расхода самого вещества катализатора придали катализу большую практическую значимость. С помощью катализа решаются задачи, стоящие перед технологией связанного азота, более 80% нефти перерабатывается с использованием каталитических процессов, невозможно осуществление большинства процессов органического синтеза.

Катализаторы – вещества, которые, многократно вступая в промежуточное взаимодействие с участниками реакции, изменяют ее механизм и увеличивают скорость реакции; при этом они восстанавливают свой химический состав после каждого цикла промежуточных воздействий.

Влияние катализатора на механизм химической реакции можно пояснить на условном примере. Пусть протекает одностадийная реакция с энергией активации Е0 :

А +В → R

Ход реакции на энергетической диаграмме каталитической и некаталитической реакций  изображен кривой 1. В присутствии катализатора механизм реакции изменяется, она протекает через несколько последовательных стадий (кривая 2). Например, первой стадией может быть образование промежуточного активированного комплекса Акт:

А + Кт → АКт

Затем активированный комплекс реагирует со вторым реагентом с образованием комплекса катализатора и продукта:

АКт + В → RКт

Последней стадией является разложение комплекса RКт с образованием продукта К и высвобождением катализатора для нового каталитического цикла:

RКт → R +Кт

Каждая из этих последовательных стадий характеризуется своими значениями энергии активации Е1, Е2, Е3, но, как правило, высота каждого из этих потенциальных барьеров ниже энергии активации Е0. Таким образом, в присутствии катализатора реакция протекает по более энергетически выгодному пути, что позволяет проводить процесс с большей скоростью.

Исходное(I) и конечное (II) энергетические состояния реакционной системы в присутствии катализатора и без него остаются одинаковыми; следовательно: катализатор не может изменить состояние химического равновесия, которое не зависит от пути реакции.

Роль катализатора состоит лишь в изменении скорости достижения состояния равновесия. Катализатор может увеличить скорость только тех процессов, которые разрешены термодинамически, но не может инициировать термодинамически невозможные реакции.

Некоторые химические реакции без катализатора практически неосуществимы из-за слишком большой энергии активации. Казалось бы, что для преодоления высокого энергетического барьера можно повысить кинетическую энергию молекул, то есть увеличить температуру. Но для многих обратимых экзотермических реакций повышение температуры приводит к смещению равновесия в обратную сторону и делает реакцию неразрешенной термодинамически. В таких случаях применение катализаторов не только оправданно, но и необходимо. Катализатор снижает энергию активации и позволяет тем самым проводить ее при существенно более низких температурах.

Молекулы реагента адсорбируются на поверхности катализатора. Адсорбция представляет собой явление, связанное с уменьшением количества газа при соприкосновении газа (адсорбата) с твердым телом (адсорбентом), и заключается в некотором уплотнении газа на поверхности твердого тела. Различают физическую адсорбцию и хемосорбцию в зависимости от того, какова природа сил, вызывающих это концентрирование молекул адсорбата у поверхности твердого тела. Если эти силы имеют такую же природу, как и молекулярное воздействие в газах, жидкостях и твердых телах, то говорят о физической адсорбции. При хемосорбции проявляются силы взаимодействия химической природы – молекулы адсорбата теряют свою индивидуальность, образуя поверхностные соединения с адсорбентом.

При протекании каталитических процессов основная роль принадлежит хемосорбции, или активированной адсорбции, результатом которой является образование активированного комплекса адсорбции – неустойчивого промежуточного соединения между реагентом и катализатором. Стадия активированной адсорбции определяет специфичность действия катализаторов в отношении различных реакций. Если химическая связь реагента с адсорбентом слишком сильная, разрушение образования комплекса, ведущее к образованию продуктов, затрудняется. Если же связь адсорбента и адсорбата слишком слабая, близкая по своей природе к физической адсорбции, то в молекуле адсорбата не происходит разрыхления связей, приводящего к снижению энергии активации каталитического процесса по сравнению с некаталитическим.

sliv1985.narod.ru