Справочник химика 21. Инсулин состоит из аминокислот


Из аминокислот не состоит инсулин

Я искала ИЗ АМИНОКИСЛОТ НЕ СОСТОИТ ИНСУЛИН. НАШЛА! Из аминокислот не построена молекула:1)гемоглобина 2)инсулина 3)гликогена 4)альбумина?

Последовательность аминокислот инсулина крупного рогатого скота. Инсулин - маленький белок, состоящий из двух полипептидных цепей, каждая из которых обладает уникальной.Секрецию инсулина усиливают аминокислоты, особенно лейцин и аргинин, некоторые гормоны гастроэнтеропанкреатической . комбинированные — состоят из экстрактов поджелудочных желез животных разных видов, например, свиньи и быка.Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот. . Зрелая инсулиновая мРНК состоит из 330 нуклеотидов, что соответствует 110 аминокислотным остаткам.И того, инсулин состоит из 51 аминокислотного остатка. Цепи соединены в одну молекулу дисульфидными мостиками, которые образуются между остатками цистеина. . регулирует поглощение аминокислот.Инсулин представляет собой белок, состоящий из двух пептидных цепей А (21 аминокислота) и В (30 аминокислот), связанных между собой дисульфидными мостиками.Эта группа может состоять только из атомов углерода и водорода, но чаще содержит помимо С и Н различные функциональные группы. . Для «строительства» инсулина природа использовала 16 аминокислот (из допустимых двадцати) (табл.1). Из аминокислот не состоит инсулин- ПРОБЛЕМЫ БОЛЬШЕ НЕТ!

В бета-клетках поджелудочной железы инсулин образуется из предшественника - проинсулина, полипептида из 84 аминокислотных остатков, у которых не наблюдается . Молекула человеческого инсулина состоит из 51 аминокислоты.Общая характеристика функции инсулина состоит в том, что в мышцах, печени и жировой ткани он усиливает анаболитические и . Для «строительства» инсулина природа использовала 16 аминокислот (из допустимых двадцати) (табл.1).Основное действие инсулина заключается в снижении концентрации глюкозы в крови. . Молекула глюкагона состоит из 29 аминокислот и имеет молекулярный вес 3485 дальтон.Аминокислотная последовательность инсулина. На расшифровку структуры инсулина было затрачено 10 лет (1944 – 1954 гг.). В белки входят двадцать аминокислот, но в разных количествах и в разной последовательности.Бычий инсулин имеет молекулярную массу около 5700. Его молекула состоит из двух полипептидных цепей:A - цепи, содержащей . При этом не удалось обнаружить никаких закономерностей в расположении какой-либо аминокислоты, никаких.Аминокислотная последовательность инсулина человека. Свиной инсулин в качестве терминальной аминокислоты Вцепи . Удаление последовательности из 8 аминокислот (с 23го по 30-й остаток) с карбоксильного конца.Молекула инсулина состоит из двух пептидных цепей, содержащих 21 (цепь А) и 30 (цепь В) аминокислотных . Инсулин обнаружен у представителей всех классов позвоночных (их инсулины отличаются положением отдельных аминокислот). Из аминокислот не состоит инсулин- 100 ПРОЦЕНТОВ!

Инсулин – это основное лекарство для лечения больных сахарным диабетом 1 типа. Иногда он также используется для стабилизации . Дело в том, что, поскольку гормон – это белковое вещество, оно состоит из определенного набора аминокислот.Молекула инсулина состоит из двух полипептидных цепей. Одна из них содержит 21 аминокислотный остаток (цепь А), вторая — 30 . Свиной инсулин, отличающийся от человеческого одной аминокислотой, реже вызывает аллергические реакции.Молекула инсулина состоит из двух полипептидных цепей. Одна из этих цепей содержит 21 аминокислотный остаток (т. н. цепь А), вторая - 30 . Увеличение глюкозы в крови стимулирует распад белка, из аминокислот образуется глюкоза.Молекула инсулина состоит из двух аминокислотных цепей; А-цепь содержит 21 аминокислоту, В-цепь - 30. . Инсулин - важнейший регулятор промежуточного обмена веществ. Главное его действие заключается в снижении уровня сахара в.Стимуляция секреции инсулина аминокислотами важна, т.к. инсулин в итоге обеспечивает транспорт аминокислот в клетки наряду с образованием белков, поэтому инсулин нужен для утилизации как избытка аминокислот, так и углеводов.Молекула инсулина, содержащая 51 аминокислотный остаток, состоит из двух полипептидных цепей . В настоящее время принято обозначать цепью А инсулина 21-членный пептид и цепью В – пептид, содержащий 30 остатков аминокислот.http://www.greenmama.ru/nid/3357715/http://www.greenmama.ru/nid/3357526/http://www.greenmama.ru/nid/3353646/

www.greenmama.ru

Аминокислоты инсулина - Справочник химика 21

    Порядок чередования аминокислотных остатков в полипептидных цепях (называемый первичной структурой) впервые именно таким образом был установлен для белка инсулина. Молекула инсулина имеет молекулярную массу 5733. Она состоит из двух полипептидных цепей, одна из которых содержит 21 аминокислотный остаток, вторая 30. Последовательности аминокислот в короткой и длинной цепях были определены в период 1945—1952 гг. Сенгером и его сотрудниками. Обе цепи в молекуле инсулина соединены дисульфидными связями S—S, образованными между остатками цистина. [c.393]     Последовательность аминокислот в молекуле инсулина человека показана на рис. 14.4. Следует обратить внимание, что символ Су—S использован для обозначения половины молекулы цистина. Мостик S—S находится между шестым и одиннадцатым остатком в цепи А, благодаря чему образуется кольцо имеются также две связи S—S, соединяющие цепь А с цепью Б. [c.393]

    Следующий шаг состоял в том, чтобы подкрепить этот труд реальным синтезом заданной молекулы белка. В 1954 г. американец Винсент Дю-Виньо (1901—1978) положил начало такому синтезу. Он получил окситоцин — пептид, состоящий всего лишь из восьми аминокислотных остатков. Однако с более сложными молекулами дело пошло быстрее, и вскоре были синтезированы цепи, содержащие несколько десятков аминокислот. К 1963 г. в лабораторных условиях были получены полипептидные цепи инсулина. [c.130]

    В настоящее время полностью расшифровано строение ряда белков и природных полипептидов в отношении последовательности соединения аминокислот (инсулин, кортикотропин и др.). [c.41]

    С-Концы пептидных цепей определяются избирательным отщепле нием концевой аминокислоты с помощью специфического фермента — карбоксипептидазы и последующей идентификацией этой аминокислоты. Если макромолекула белка состоит из двух (или более) пептидных цепей, как в случае инсулина (см. рис. 53), то избирательно разрушают дисульфидные мостики окислением (например, надмуравьиной кислотой) и затем полученные полипептиды разделяют путем фракционирования на ионитах. Для определения последовательности расположения аминокислот в каждой полипептидной цепи ее подвергают частичному кислотному гидролизу и избирательному расщеплению с помощью ферментов, каждый из которых разрывает полипептидную цепь только в определенных местах присоединения какой-то одной определенной аминокислоты или одного типа аминокислот (основных, ароматических). Таким образом получают несколько наборов пептидов, которые разделяют, используя методы хроматографии и электрофореза. [c.376]

    Все многообразие белков образовано 20 различными аминокислотами при этом для каждого белка строго специфичной является последовательность, в которой остатки входящих в его состав аминокислот соединяются друг с другом. Найдены методы выяснения этой последовательности в резу.пьтате уже точно установлено строение ряда белков. И самым замечательным достижением в этой области явилось осуществление синтеза из аминокислот простейших белков как уже указывалось, в 50—60-х годах XX века синтетически получены гормон инсулин и фермент рибонуклеаза. [c.586]

    В конце 40-х — начале 50-х годов нашего века химикам удалось обстоятельно проанализировать с помощью метода бумажной хроматографии смеси аминокислот, полученные при расщеплении ряда белков. В результате удалось установить общее число остатков каждой аминокислоты, содержащихся в молекуле белка, однако порядок расположения аминокислот в полипептидной цепи при этом определить, естестве шо, было нельзя. Английский химик Фредерик Сенгер (род. в 1918 г.) изучал инсулин — белковый гормон, состоящий примерно из пятидесяти аминокислот, распределенных между двумя взаимосвязанными пол и пептидными цепями. Сенгер расщепил молекулу на несколько более коротких цепей и проанализировал каждую из них методом бумажной хроматографии. Восемь лет продолжалась кропотливая работа по складыванию мозаики , но к 1953 г. был установлен точный порядок расположения аминокислот в молекуле инсулина. Позднее таким же способом было установлено детальное строение даже больших молекул белка [c.130]

    Синтезы различных пептидов приобрели важнейшее значение при изучении белковых веществ, ферментов и некоторых антибиотиков. Прогресс в этой области ознаменован получением полипептидов с молекулярным весом того же порядка, что и природные биополимеры, причем удалось синтезировать вещества с определенной последовательностью сочетания различных аминокислот (инсулин и др.). Присутствие в аминокислотах двух реакционноспособных функциональных групп вызывает необходимость их временной защиты для предотвращения побочных реакций. Эти особенности видны даже в простейшем синтезе дипептида. Синтез -аланил-Ь-аланина включает в себя восемь стадий и протекает по следующей схеме  [c.220]

    Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот. Инсулин животный отличается от человеческого 1-3 аминокислотными радикалами, что является причиной возникновения аллергических реакций, особенно у детей, хота по активности и времени действия они идентичны. Широкомасштабное применение инсулина в терапии сдерживалось его высокой стоимостью и ограниченностью сырьевых ресурсов. [c.180]

    Гетеродет-циклические полипептиды. Инсулин. Антядиабетиче-ческий гормон поджелудочной железы (понижает кровяное давление). Последовательность аминокислот установлена Сейнджером (1949— 1954), см. схему на стр. 394. [c.393]

    Сопряжение я-электронов азота, углерода и кислорода придает пептидной связи особый характер. Полипептиды входят в структуру белков. Интересно, что первый синтез белка — инсулина, включающего в свою структуру 51 аминокислоту, который был выполнен до матричного синтеза обычным путем, проходил в 221 стадию. Так как выход продукта на каждой стадии никогда не достигает 100%, то выход конечного продукта многостадийного спн-теза очень мал. Кроме того очистка от побочных продуктов, получающихся на каждой стадии, очень трудна. [c.191]

    Синтез инсулина — замечательное достижение науки. Чтобы осуществить его, потребовалось последовательно провести 223 реакции. Удалось соединить в точно определенном порядке все остатки а-аминокислот, образующих молекулу инсулина (а их 51 ). Работа продолжалась три года. Таким образом, подтвердилась правильность материалистических представлений о принципиальной возможности синтеза белков вне организма. И несомненно, что с развитием науки будут осуществлены синтезы еще более сложных белковых веществ. [c.294]

    При сопоставлении полученных результатов обнаружилось два чрезвычайно интересных факта. Прежде всего оказалось, что, хотя у разных представителей животного мира строение определенного гормона очень сходно, все же существуют четкие видовые различия. Так, например, инсулин, выделенный из организма кита и свиньи, совершенно тождествен, в то время как инсулин лошади отличается тем, что одна из 51 аминокислоты (серин) заменена на другую — глицин. Эти наблюдения дают право говорить, что био-логия с помощью химии приближается к возможности устанавливать видовые различия не по строению скелета, органов, а по химическому строению характерных для организма белков. [c.343]

    К пептидным гормонам относятся инсулин, продуцируемый поджелудочной железой, регулирующий метаболизм углеводов, жиров и белков, содержащий 51 аминокислотный остаток секретин, вырабатываемый в желудочно-кишечном тракте, определяющий секреторную функцию желудочно-кишечного тракта, содержащий 21 аминокислотный остаток в передней доле гипофиза вырабатываются адренокор-тикотропин (34 аминокислоты), контролирующий активность коры надпочечников, пролактин (198 аминокислот), влияющий на рост грудных желез и секрецию молока в задней доле гипофиза вырабатываются вазопрессин (9 аминокислот), действующий как диуретик и сосудосуживающее, и окси-тоцин (9 аминокислот), стимулирующий сокращение гладкой мускулатуры. Это только иллюстративный перечень гормонов пептидной структуры — их значительно больше, многие из них еще изучены не полностью, как в плане строения, так и функциональности. Особенно важно и проблематично исследование связи их строения с активностью. Данные по связи структура — активность позволяют иногда получать синтетические полипептиды с активностью, превосходящей природные. Так, варьируя аминокислотный состав нейрогипофизных гормонов (схема 4.4.1) было получено около 200 аналогов, из которых один, [4-ТИг]-оксито-цин оказался высокоактивным. [c.81]

    Число белков, химическое строение которых полностью рас-шифровано растет с каждым годом. При сопоставлении полученных результатов обнаружились два чрезвычайно интересных факта прежде всего оказалось, что хотя у разных представителей животного мира строение определенного гормона очень сходно, однако все же существуют четкие видовые отличия. Так, например, инсулин, выделенный из организма кита и свиньи, совершенно тождествен, в то время как в инсулине лошади одна из 51 аминокислот заменена на другую. С другой стороны выяснилось, что носителем биологической активности может быть не вся белковая молекула, а определенная часть ее. Так, в растительном ферменте — папаине, построенном из 180 аминокислотных остатков, можно [c.335]

    Одной из главных функций серы в биогенном смысле является ее способность давать связи между полипептидными цепями протеинов таким образом, что возникает общее трехмерное расположение атомов в пространстве и притом такое, которое дает специфические возможности для тонкого функционирования в биохимических процессах. Приводим часть структуры молекулы инсулина быка, состоящей из двух цепей, соединенных мостиками из атомов серы. В одной цепи 21 аминокислота, а в дрз- гой 30. [c.369]

    Химическое определение первичной структуры даже простого полипептида, каким бы методом оно не проводилось, требует огромной затраты времени и сил. В 1958 г. Сэнгер был удостоен Нобелевской премии по химии за расшифровку первичной структуры инсулина — полипептида, состоящего всего лишь из 51 аминокислоты (рис. 25-4). [c.404]

    Каррер и др. [23] в ряде работ первыми показали удобство использования алюминийгидрида лития для получения амино-спиртов из эфиров аминокислот. Способность этого мощного восстанавливающего агента превращать свободные карбоксильные группы в первичные спиртовые группы была положена В основу попытки Фромажо и др. [24, 25] определить С-концевые аминокислоты инсулина. Суспензию белка в Й-этилморфолине, содержащем катионный детергент, обрабатывали восьмикратным избытком алюминийгидрида лития при 55° в течение 8 час. В эфирном экстракте нейтрализованного кислотного гидролизата были обнаружены этаноламин и пропаноламин, соответствующие концевым [c.194]

    По биологическим функциям — гормоны, регулирующие обмен углеводов, липидов и аминокислот (инсулин, глюкагон, кортизол, адрена- [c.104]

    Регулирующие обмен углеводов, жиров, аминокислот инсулин, глюкагон, адреналин, глюкокортикостероиды (кортизол). [c.381]

    Многие пептиды являются гормонами. Так, например, присутствующие в гипофизе гормоны окситоцин и вазопрессин состоят из девяти аминокислотных остатков, т. е. относятся к нанопептидам. Первый влияет на протекание родов у женщин и образование молока, второй контролирует водный обмен в организме. Инсулин, вырабатываемый поджелудочной железой, контролирует метаболизм сахаридов, и его недостаток приводит к диабету. Инсулин состоит из двух цепей, одна из которых содержит 21, а другая — 30 аминокислотных остатков. Цепи соединены серными мостиками —5—5—, которые образуются при окислении групп 5Н двух цистеиновых остатков (при этом получается остаток аминокислоты цистина). Структура инсулина точно известна, и он был синтезирован. Другой пептидный гормон, адренокортикотропный гормон (АКТГ), регулирует синтез стероидных гормонов в коре надпочечников, а соматотропин контролирует рост. Оба этих гормона вырабатываются передней долей гипофиза. К гормонам, образующимся в пищеварительном тракте, относятся, например, секретин и гастрин. Среди пептидов имеются и антибиотики, например бацитрацин (составная часть фрамикоина). [c.191]

    Последовательность расположения аминокислотных остатков в полипептидной цепи создает первичную структуру белка она установлена в настоящее время для ряда природных белков. Осуществлен и синтез ряда белков, например инсулина (51 аминокислота), рибонуклеазы (124 аминокислотных остатка). Синтезы подобного рода требуют последовательного осуществления сотен химических операций. Большую помощь оказывает при этом метод твердофазного синтеза, предложенный Мэрифильдом в 1963 г. полипептидная цепь постепенно наращивается на полимерном носителе (полисти-рольной смоле) и лишь после завершения синтеза снимается е носителя. [c.635]

    Познание химического сгрое-ния белков позволило решить вопрос о их синтезе. В этом отношении также достигнуты большие успехи. В настоящее время используют разработанный в начале 60-х годов твердофазный синтез. При этом первая аминокислота закрепляется на полимерном носителе (специальной полнстирольной смоле) и к ней последовательно подшиваются все новые и новые аминокислоты. По окончании синтеза готовая полипептидная цепь снимается с носителя. Таким методом были синтезированы инсулин, рибонуклеаза, а за ними и многие другие белки. Для синтеза рибонуклеазы необходимо было осуществить более десяти тысяч отдельных операций. В настоящее время разработаны автоматы, осуществляющие все необходимые операции по заданной программе. [c.336]

    Соединенные пептидной связью аминокислоты образуют поли-пептидную цепь. Чередование аминокислот в этой цепи является важнейшим фактором, определяющим биологическую функцию белка и его специфичность для того или другого вида животных. Длина таких цепочек и, следовательно, число входящих в них аминокислот, по-видимому, постоянно для разных белков. Так, в инсулин входят две цепочки из 30 и 21 аминокислоты, в рибону-клеазу — одна цепочка из 124 аминокислот и т. п. [c.199]

    Мет — Асп — Тре — ОН (мол. м. 3485 букв, обозначения см, в ст. а-Аминокислоты). Для сохранения биол, активности Г. необходима структурная целостность его молекулы. Секретируется а-клетками островков поджелудочной железы, В-во, подобное Г,, вырабатывается также в слизистой оболочке кишечника. Г, участвует в регуляции углеводного обмена, является физиол, антагонистом инсулина. Усиливает распад и тормозит синтез гликогена в печени, стимулирует образование глюкозы из аминокислот и секрецию инсулина, вызывает распад жиров. При введении в организм повышает уровень сахара в крови, [c.139]

    Третичная структура белков, обусловленная взаимодействием боковых цепей аминокислот, не приводит к такой высокой упорядоченности структуры, как в предыдущем случае. Помимо водородных связей важным фактором стабилизации третичной структуры является образование дисульфидных связей. Молекула инсулина имеет три таких дисульфидных мостика, два из которых соединяют две отдельные полипептидные цепи в молекулу. Третичная структура часто придает белковой молекуле такую конформацию, при которой гидрофильные группы (ОН, ЫНз, СО2Н) расположены на поверхности молекулы, а гидрофобные группы (алкильные и арильные боковые цепи)[ направлены внутрь, к центру молекулы. [c.302]

    В последнее время осуществлен полный синтез нескольких очень сложных природных полипептидов, имеющих важное биологическое значение. К ни относятся, например, гормоны инсулин, состоящий из 51 остатка аминокислот окситоиин и др. [c.394]

    Последние четыре белка, приведенные в табл. 42, — гормоны, но и здесь нет заметного. различия в содержании разных аминокислот, кроме тиреогло 5улина, в состав которого входят иодированные аминокислоты. В инсулине много цистеина и цистина, но их много и в кератине. Известно также, что аминокислотный состав высокоспецифичных белков зависит от источника выделения, что было показано, например, на инсулине (Хкрфенист, 1953). [c.656]

    Санжер установил полную последователшость аминокислот в инсулине при помощи частичного гидролиза химотрипсином (1949—1950) и показал, что рассчитанный теоретически молекулярный вес (5734) близок к экспериментальным данным. Он нашел, что в молекуле белка одна полипептидная цепь (цепь А) имеет N-концевой глицин эта цепь связана дисульфидными связями со второй цепью (цепью В), имеющей N-концевой остаток фенилаланин. Окисление надмуравьиной кислотой расщепляет связь S—S, и образуются два цистеинилпептида. [c.698]

    Неоспоримое преимущество этого метода по сравнению с классическими методами синтеза пептидов состоит в том, что ни на одной из стадий он не требует выделения растущей полипептидной цепи. В силу чрезвычайно низкой растворимости аддукт пептида и полимера легко отмывается после каждой реакции от побочных продуктов, растворителей и избытка реагентов без потери пептида, после чего аддукт готов к следующей реакции- В настоящее время метод автоматизирован, и запрограммированные аминокислотные синтезаторы без труда могут присоединить шесть аминокислот к растущей полипептидной цепи за 24 ч. Эти приборы добавляют реактивы в падленусловия реакций, обеспечивают необходимое время реакции, отмывают побочные продукты, после чего начинают всю операцию сначала. При помощи метода ТФСП были синтезированы инсулин и фермент рибонуклеаза, состоящий нз 124 аминокислот. [c.406]

    В 20-40-е гг. получили развитие физ.-хим. методы анализа Б. Седиментациоиными и диффузионными методами были определены мол. массы многих Б., получены данные о сферич. форме молекул глобулярных Б. (Т. Сведберг, 1926), выполнены первые рентгеноструктурные анализы аминокислот и пептидов (Дж. Д. Бернал, 1931), разработаны хроматографич. методы анализа (А. Мартин, Р. Синг, 1944). Существенно расширились представления о функциональной роли Б. был выделен первый белковый гормон-инсулин (Ф. Бантинг, Ч. Г. Бест, i922 антитела были идентифицированы как фракция у-глобулинов (1939) и тем самым обнаружена новая ф-ция Б.-защитная. Важным этапом явилось открытие ферментативной ф-ции мышечного миозина (В.А. Энгельгардт, М. Н. Любимова, 1939) и получение первьк кристаллич. ферментов (уреазы-Дж. Б. Самнер, 1926 пепсина-Дж.X. Нортроп, 1929 лизоцима-Э. П. Абрахам, Р. Робинсон, 1937). [c.248]

    ИНСУЛИН (от лат insula-остров), гормон, вырабатываемый в поджелудочной железе Р-клетками островков Лангерганса Молекула И. человека (мол. м 5807) состоит из двух пептидныл цепей (А и В), соединенных двумя дисульфидными мостиками третий дисульфидный мостик находится в цепи А (см ф-лу букв, обозначения см. в ст. Аминокислоты) [c.242]

chem21.info

Сколько аминокислот содержит инсулин | Косметика Грин Мама

Я искала СКОЛЬКО АМИНОКИСЛОТ СОДЕРЖИТ ИНСУЛИН. НАШЛА! Если Вы школьник:Одна аминокислота кодируется тремя нуклеотидами. Кол-во нуклеотидов:51*3=153 И еще стоп кодон итого 153 3=156 Ответ 156 нуклеотидов. Если Вы студент:Никак.Секрецию инсулина усиливают аминокислоты, особенно лейцин и аргинин . Современные коммерческие препараты инсулина — содержат 100 ЕД/мл, но лучше убедиться в этом изучив этикетку (ошибка в 2,5 раза может быть роковой!

).Независимо от того, каким способом вводится инсулин, дневной рацион должен содержать максимальное количество аминокислот и белка при одновременном минимальном количестве углеводов.Молекула инсулина образована двумя полипептидными цепями, содержащими 51 аминокислотный остаток:A-цепь . Кроме того, инсулин стимулирует и синтез белка в клетке, увеличивая проницаемость клеточных стенок для аминокислот.Молекула инсулина состоит из двух аминокислотных цепей; А-цепь содержит 21 аминокислоту, В-цепь - 30. . Он отличается от инсулина человека лишь одной аминокислотой.влияние аминокислот всаа на уровень инсулина в крови. . Сегодня мы поговорим об аминокислотах с разветвленной боковой цепочкой — ВСАА. Но не в том плане, в каком принято обычно, а в несколько ином.Содержание. Сколько аминокислот содержит инсулин- ПРОБЛЕМЫ БОЛЬШЕ НЕТ!

1 Механизм действия инсулина. 2 Биологический синтез и строение инсулина. . Зрелый гормон содержит 21 аминокислоту в А цепочке и 30 аминокислот во второй цепи.Аминокислоты и инсулин. J. C. floyd, jr. . Резюме. Исследование показывает, что при приеме белковых продуктов происходит повышение уровня инсулина.Аминокислотная последовательность инсулина человека и многих животных различается всего на 1-2 аминокислоты. У рыб по сравнению с животными В- цепь больше и содержит 32 аминокислотных остатка.Аминокислотная последовательность инсулина. На расшифровку структуры инсулина было затрачено 10 лет (1944 – 1954 гг.). В белки входят двадцать аминокислот, но в разных количествах и в разной последовательности.Инсулин стал первым белком, последовательность аминокислот которого полностью расшифровали. . Шприцы U-40 используют для инъекций инсулина, содержащего 40 единиц в 1 мл. Сколько аминокислот содержит инсулин- 100 ПРОЦЕНТОВ!

Ближе всего по своей структуре инсулин свиней – он отличается от человеческого только по одной аминокислоте, в 30 положении цепи аминокислот у человека расположена аминокислота треонин, а у свиней аланин.Дано:Белок инсулин – 51 аминокислота. . 2) Потом подсчитаем, сколько нуклеотидов содержит ген ( обязательно обе цепи ДНК). 153* 2 =306 (нуклеотидов).Единственное отличие - в количестве остатка присутствующих в его составе аминокислот. . Помимо этого, все виды инсулина продленного действия в своем составе содержат химические катализаторы, обеспечивающие длительную работу.Молекула инсулина состоит из двух полипептидных цепей. Одна из них содержит 21 аминокислотный остаток (цепь А), вторая — 30 . Свиной инсулин, отличающийся от человеческого одной аминокислотой, реже вызывает аллергические реакции.Одна из этих цепей содержит 21 аминокислотный остаток (т. н. цепь А), вторая - 30 аминокислотных остатков (цепь В). Цепи соединены двумя . Инсулин обеспечивает активный транспорт в клетки многих, хотя и не всех, аминокислот.Идентичны также В - цепи инсулинов коровы, свиньи, собаки, козы и лошади. Аминокислотные замены в A - цепи обычно наблюдаются в положениях 8,9 и 10 (выделены . 5.7. Семь аминокислот содержат незаряженные полярные R-группы.Небольшое количество инсулина на усвоение белков и жиров нам все же потребуется. . Продукты, содержащие белки и жиры, могут повысить уровень глюкозы . Глюкагон способствует превращению избытка аминокислот в глюкозу.Молекула инсулина образована двумя полипептидными цепями, содержащими 51 аминокислотный остаток:A-цепь состоит из 21 . Секрецию инсулина усиливают аминокислоты, особенно лейцин и аргинин, некоторые гормоны.В таком случае человеку, страдающему СД1 вводятся лекарственные препараты, содержащие инсулин, вводятся в . После того, как инсулин попадает в кровь, его основная задача — доставка глюкозы (углеводов), аминокислот и жиров в клетки.http://www.greenmama.ru/nid/3412180/http://www.greenmama.ru/nid/3353888/http://www.greenmama.ru/nid/3354006/

www.greenmama.ru

Инсулин последовательность аминокислот - Справочник химика 21

    Порядок чередования аминокислотных остатков в полипептидных цепях (называемый первичной структурой) впервые именно таким образом был установлен для белка инсулина. Молекула инсулина имеет молекулярную массу 5733. Она состоит из двух полипептидных цепей, одна из которых содержит 21 аминокислотный остаток, вторая 30. Последовательности аминокислот в короткой и длинной цепях были определены в период 1945—1952 гг. Сенгером и его сотрудниками. Обе цепи в молекуле инсулина соединены дисульфидными связями S—S, образованными между остатками цистина. [c.393]     Последовательность аминокислот в молекуле инсулина человека показана на рис. 14.4. Следует обратить внимание, что символ Су—S использован для обозначения половины молекулы цистина. Мостик S—S находится между шестым и одиннадцатым остатком в цепи А, благодаря чему образуется кольцо имеются также две связи S—S, соединяющие цепь А с цепью Б. [c.393]

    Несмотря на низкую специфичность пепсина, из гидролизата цепи А инсулина был выделен большой N-концевой пептид, состоящий из тринадцати аминокислотных остатков, что в сочетании с данными по составу пептидов, образующихся в результате частичного кислотного гидролиза, позволило установить последовательность аминокислот в цепи А инсулина [267]. [c.209]

    Что касается растворимых глобулярных белков (например, гемоглобина, инсулина, гамма-глобулина, яичного альбумина), то вопрос о характере вторичной структуры еще сложнее. Накапливаются данные, согласно которым и в этом случае а-спираль играет ключевую роль. Подобные длинные пептидные цепи не одинаковы по структуре по всей длине отдельные их участки свернуты в спирали и являются относительно жесткими другие участки образуют петли, скручены случайным образом и довольно подвижны. Установлено, что при денатурации белка спиральные участки раскручиваются и цепь в целом приобретает неупорядоченное строение. (Однако опыт показывает, что в определенных условиях раскручивание и возникновение спирали могут быть обратимыми процессами белок возвращается к исходной вторичной структуре, поскольку это расположение является наиболее стабильным для цепи с данной последовательностью аминокислот.) [c.1061]

    Гамов попытался проверить правильность своего кода, сопоставив возможность сочетания ромбов с известной первичной структурой инсулина и адренокортикотропина. При этом возникли неразрешимые противоречия. Дальнейшие исследования показали, что никакие перекрывающиеся коды нельзя согласовать с опытом. Наличие перекрытий в кодонах может выражаться в корреляциях между соседними аминокислотными остатками. Иными словами, некоторые парные сочетания остатков должны быть запрещены. Анализ первичных структур белкои показал, что таких корреляций нет —любой остаток может следовать за любым, хотя разные остатки встречаются с различными частотами [4, 5]. Можно, однако, представить себе перекрывающиеся нуклеотидные коды, допускающие любую последовательность аминокислот [6]. [c.555]

    Последовательность аминокислот в фенилаланиновой цепи инсулина. I. Идентификация низших пептидов из продуктов частичного гидролиза белков [271]. [c.220]

    Последовательность аминокислот в фенилаланиновой цепи инсулина. П. Исследование пептидов из продуктов гидролиза ферментов [272]. [c.220]

    Инсулин - гормон, регулирующий метаболизм глюкозы. Недостаток инсулина в организме человека - причина серьезного заболевания, называемого диабетом. Последовательность аминокислот в инсулине в 1953 г. установил Ф. Сенгер (Нобелевская премия, 1958 г.). На это ему потребовалось около 10 лет работы. Инсулин содержит остатки 51 аминокислоты в двух полипептидных цепях, связанных дисульфидными мостиками. [c.523]

    Благоприятным обстоятельством явилось отсутствие триптофана и метионина, которые разлагаются при окислении белка надмуравьиной кислотой. Вышеприведенная последовательность аминокислот была установлена для инсулина быка. В случае инсулинов свиньи и овцы состав и последовательность аминокислот для основной фенилаланинов ой фракции был аналогичным, в то время как кислая фракция имела в положениях от 8 до 10 последовательность тре—сер—изл для инсулина свиньи и ала—глу (КНз)— —вал для инсулина овцы [24]. [c.411]

    Однако / нс-форма не имеет, по-видимому, широкого распространения в белках вследствие стерических (пространственных) препятствий. Число и последовательность аминокислот, соединенных друг с другом пептидными связями, характеризуют первичную структуру белка. Молекулярные веса белковых молекул колеблются от 6000 для инсулина до более миллиона. Инсулин представляет собой белок с крайне низким молекулярным весом однако его молекула содержит 51 аминокислотный остаток. Белок с молекулярным весом 100 ООО содержит приблизительно 900 аминокислотных остатков. Выяснение первичной структуры белка представляет, таким образом, очень трудную задачу. Но это не испугало Сенгера, который в конце второй мировой войны начал серию исследований, успешно завершившихся в 1954 г. полной расшифровкой первичной структуры инсулина. Успех Сенгера и его сотрудников был обусловлен тем, что сам Сенгер разработал метод анализа концевых амин-ных групп, а Мартин и Синг — методы выделения веществ с помощью распределительной хроматографии на бумаге. [c.27]

    Вторая стадия определения структуры белка состоит в выяснении последовательности, в которой связаны аминокислоты. Эта последовательность аминокислот называется первичной структурой белка. В 1958 г. Зангер получил Нобелевскую премию за определение общей последовательности аминокислот в инсулине — белке с 51 аминокислотным остатком. [c.268]

    Последовательность аминокислот в пептидных цепях белков, например инсулина, производит впечатление случайного и лишенного систематичности набора однако она может оказывать влияние на свойства белков несколькими способами. Прежде всего электрические свойства белков и их изоэлектрические точки определяются числом и расположением кислых и основных аминокислот . Пространственное влияние замещающих групп определяет ста- [c.123]

    Последовательность аминокислот в химотрипсине устанавливается в настоящее время с помощью методов, описанных выше для инсулина способ, которым закручены и согнуты цепи, будет по-видимому, установлен методом рентгеноструктурного анализа, как это было сделано для миоглобина. К моменту написания этой книги исследование структуры химотрипсиногена достигло стадии, аналогичной той, которая для случая лизоцима представлена на рис. 20-7. [c.129]

    Последовательность аминокислот в пептидных цепях белков, например инсулина, производит впечатление случайного и лишенного систематичности набора однако она может оказывать влияние на свойства белков несколькими способами. Так, кислотно-основные свойства белков и их изоэлектрические точки определяются числом и расположением кислых и основных аминокислот. Пространственное влияние замещающих групп определяет стабильность и точки изгиба пептидных спиралей. Последовательность аминокислот также может оказывать влияние на степень межмолекулярных взаимодействий и растворимость белков. Пептиды, состоящие из аминокислот одного типа, часто оказываются чрезвычайно мало растворимыми вследствие сильных внутримолекулярных взаимодействий. Если однородность цепи нарушается в результате включения в нее других аминокис- [c.388]

    Первым белком, для которого была полностью определена последовательность аминокислот, является инсулин (за эту работу Ф. Сэнгер в 1958 г. получил Нобелевскую премию). Молекула инсулина состоит из двух полипептидных цепей неравной длины, соединенных двумя дисульфидными поперечными связями —5—5— (фиг. 51). Вслед за инсулином была определена последовательность аминокислот в рибонуклеазе. Ее молекула представляет собой одну полипептидную цепь, удерживаемую в напряженной конформации четырьмя дисульфидными поперечными связями между восемью остатками цистеина. Число аминокислотных остатков в цепи равно 124. Ни в инсулине, ни в рибонуклеазе нет свободных —8Н-групп, так как все остатки цистеина в этих белках образуют поперечные 5—5-связи. [c.271]

    Вирус табачной мозаики (ВТМ). Из всех вирусов наиболее хорошо изучен растительный вирус табачной мозаики. Тем не менее сведения, которыми мы располагаем в настояш,ее время, вероятно, еще далеко не достаточны для полного описания его строения. Физические исследования показали, что ВТМ представляет собой тонкий стержень длиной 3000 А и диаметром 150 А. Вес такой частицы равен 39- 10 . Из этого числа 5% приходится на РНК, константа седиментации которой равна 27S, а молекулярный вес 2,0 10 . Если бы цепь РНК вируса полностью вытянуть, она была бы в 10 раз длиннее вирусной частицы. Остальные 95% вируса приходятся на белок, который состоит из 2130 идентичных субъединиц. В состав каждой субъединицы, имеющей молекулярный вес 17 420, входит 158 аминокислот. Белок вируса табачной мозаики является третьим белком после инсулина и рибонуклеазы, для которого полностью установлена последовательность аминокислот. Каждая белковая субъединица представляет собой единую полипептидную цепь, на N-конце которой находится ацетилированный серии. Это один из редких случаев особой модификации N-конца полипептидной цепи. Различные штаммы этого вируса отличаются по аминокислотному составу белка. У всех исследованных штаммов белковая часть содержит только один остаток цистеина. В некоторых штаммах отсутствуют метионин и гистидин. [c.359]

    Быстрое развитие химических и физических методов анализа позволило определить точную последовательность аминокислот в молекуле белка. Первым белком, строение которого удалось выяснить, был инсулин — гормон поджелудочной железы. Его молекула состоит из двух полипептидных цепей, связанных между собой дисульфидными (—8—8—) связями. [c.6]

    При сравнении строения этих пептидов с известной последовательностью аминокислот в А- и В-цепях инсулина (см. рис. 13 и 14) видно, что мостик а соединяет аминокислоту № 19 цепи В с аминокислотой № 20 цепи А. Цистиновый мостик б соединяет аминокислоты № 7 обеих цепей, тогда как мостик в образует дисульфидную петлю между 6-й и 11-й аминокислотами цепи А. [c.87]

    При проведенном недавно исследовании этой реакции установлено, что любая пептидная связь дает некоторую окраску, но определенные последовательности аминокислот, и притом не обязательно содержащие ароматические остатки, дают более интенсивную окраску, чем другие они и обусловливают главным образом окраску, развиваемую белком. Предварительный полный гидролиз альбумина снижает плотность окраски более чем на /з. Расщепление дисульфидных связей в инсулине путем окисления надмуравьиной кислотой снижает общую интенсивность окраски примерно на /з [4]. [c.266]

    Гетеродет-циклические полипептиды. Инсулин. Антядиабетиче-ческий гормон поджелудочной железы (понижает кровяное давление). Последовательность аминокислот установлена Сейнджером (1949— 1954), см. схему на стр. 394. [c.393]

    Последовательность расположения аминокислотных остатков в полипептидной цепи создает первичную структуру белка она установлена в настоящее время для ряда природных белков. Осуществлен и синтез ряда белков, например инсулина (51 аминокислота), рибонуклеазы (124 аминокислотных остатка). Синтезы подобного рода требуют последовательного осуществления сотен химических операций. Большую помощь оказывает при этом метод твердофазного синтеза, предложенный Мэрифильдом в 1963 г. полипептидная цепь постепенно наращивается на полимерном носителе (полисти-рольной смоле) и лишь после завершения синтеза снимается е носителя. [c.635]

    Таким путем были установлены структуры окситоцина и а-кортикотро-пина (стр. 1047). Одним из наиболее замечательных достижений в этой области было установление полной последовательности аминокислот в молекуле инсулина, выполненное в Кембриджском университете группой, руководимой Ф.Сэнджером, который за эту работу был удостоен Нобелевской премии в 1958 г. (см. задачу 12, стр. 1067). Число пептидов и белков, структуры которых полностью расшифрованы, постоянно увеличивается сюда относится гемоглобин, содержащий четыре цепи, в каждой из которых имеется более 140 аминокислотных остатков, и химотрипсиноген, цепь которого содержит 246 остатков. [c.1050]

    Основное внимание мы будем уделять тем белкам, структура которых в ативном состоянии была (расшифровала с 1по мощью рентгеноструктурного анализа лизоциму, рибонуклеазе, миоглоби-ну, гемоглобину и инсулину. Некоторое внимание будет уделено трипсину, химотрипсину и их предшественникам, а также цитохрому, для которых структура известна частично или, по крайней мере, определена последовательность аминокислот. В основном исследования выполнялись с помощью протонного магнитного резонанса, но ограниченное применение в специальных исследованиях получил и ЯМР других ядер ( Р, Р, и др.). [c.348]

    Инсулин состоит из 51 аминокислотного остатка, которые составляют две цепи цепь А (21 остаток), цепь В (30 остатков). Обе цепи связаны двумя дисульфидными мостиками. Цепь А содержит третий дисульфидный мостик, замыкающий петлю, состоящую -из шести аминокислотных остатков. Последовательность аминокислот в инсулине определена [78] и проведено его рентгеноструктурное исследование [79]. Цепь А имеет сильно свернутую структуру с короткими квазиспиральными участками. Участки а-опиралей имеются в цепи В между дисульфидными мостиками. Низкая молекулярная масса (5780), казалось бы, делает инсулин привлекательным объектом для исследования с помощью ЯМР, тем не менее еще нет публикаций об изучении этим методом нативного белка. Отчасти, видимо, это объясняется тем, что в нем не выделен активный центр . Гормональная функция инсулина — способность понижать содержание сахара в крови —хорошо известна, но непонятна с химической точки зрения. Инсулин обладает ярко выраженной способностью образовывать полимеры. Димер и гексамер хорошо охарактеризованы [79]. В димере наблюдается интересное окружение (по типу ящика ) остатков Тир-26 (В) и Фен-24 (В), а также остатков во второй входящей в димер молекуле, связанных с двумя первыми осью симметрии второго порядка. Это явление представляет несомненный интерес для изучения на частоте 220 МГц. [c.384]

    Разработанные в последние годы методы селективного гидролиза, разделения и идентификации открыли новые возможности для химического изучения структуры полипептидов и белков. Как уже указывалось, эти природные продукты включают разнообразный материал антибиотики, гормоны, токсины, ферйенты,. вирусы, волокна и т. д. Хотя за короткий период времени был достигнут большой прогресс в выяснении структуры различных природных продуктов, работа по установлению химической структуры белков в значительной степени осложнена их макромолеку-лярной природой. Изучение последовательности аминокислот в полипептидах и белках показывает наличие в них своеобразных группировок аминокислот. Например, из семи основных аминокислот, имеющихся в АКТГ, четыре расположены по соседству, а все семь включены в последовательность из 14 аминокислот из семи кислых аминокислот, ирисутствуюпщх в этом гормоне, три находятся по соседству друг с другом. В рибонуклеазе три остатка серина и три остатка аланина находятся рядом аналогична располагаются три ароматические аминокислоты в инсулине. Для ряда ферментов — тромбина, трипсина, химотрипсина и фосфоглюкомутазы было отмечено наличие одинаковой последовательности из шести аминокислот. Отмечено, что в структуре-и механизме действия протеолитических ферментов важную роль играют определенные трипептиды [160]. В настоящее время из-за ограниченности наших знаний относительно точного молекулярного механизма действия гормонов и ферментов можно делать только предположения о значении тёх или иных аминокислотных группировок. Вопрос о связи определенной последовательности аминокислот с функциями различных соединений может быть выяснен лишь по мере накопления экспериментального материала. Тем самым, по-видимому, станет возможным значительно более полное понимание механизма действия природных соединений на молекулярном уровне. [c.418]

    Окисление надмуравьиной кислотой приводит к разрыву этих мостиков с образованием групп SOgH. При этом получаются две фракции А и Б, каждая из которых подвергалась систематическому расщеплению с образованием пептидов. Последние были разделены при помощи метода бумажной хроматографии и другими методами после установления их строения оказалось возможным определить последовательность аминокислот в канедой из двух цепей. Цепь А содержит 21, а цепь Б — 30 аминокислот. Гидролиз природного инсулина химотрипсином, экстрактом поджелудочной железы и кислотами, т.е. в условиях, в которых не разрушаются связи S—S, привел в дальнейшем к получению пептидов, в которых эти мостики сохраняются. Эти пептиды разделяли ионо-форезом на бумаге и определяли их строение. При этом пришли к заключению, что из шести цистеиновых остатков инсулина четыре находятся в цепи А и два — в цепи Б. Последние обеспечивают связь с цепью А при помощи двух цистеиновых остатков цепи А, тогда как два остальных цистеиновых остатка цепи А образуют меньший цикл. Кроме того, было установлено, что из шести амидных групп молекулы три принадлежат аспарагиновым, а три — глутаминовым остаткам. Таким путем пришли к следующему строению инсулина быка  [c.432]

    Метод, впервые примененный к инсулину, был далее распространен на другие белки. Между прочим, была определена полная последовательность аминокислот у ряда белков со сравнительно небольшими молекулярными весами и единой полипептидной цепью, таких, как, например, кортикотронины, меланофорный гормон, глукагон и рибонуклеаза. До настоящего времени еще не было полностью выяснено строение какого-либо типичного природного белка с высоким молекулярным весом и макромолекулами, состоящими из нескольких полипептидных цепей, но и в этом направлении уже сделаны значительные успехи, как видно из следующих примеров. [c.433]

    Порядок, в котором расположены аминокислотные остатки в нолинеи-тидной цепи, сравнительно недавно был установлен для инсулина. Молекулярный вес инсулина около 12 ООО. Молекула инсулина состоит из четырех полинептидных цепей, две из которых содержат 21 аминокислотный остаток, а две другие — 30. Последовательность аминокислот в коротких и длинных цепях была установлена в 1945—1952 гг. английским биохимиком Санджером и его сотрудниками. Четыре цепи в молекуле инсулина соединены между собой связями между атомами серы, соединяющими обе половины цистиновых остатков (см. табл. 34). [c.487]

    К концу 60-х годов в молекулярной биологии сложилась парадоксальная ситуация. К тому времени были довольно хорошо разработаны методы определения последовательности аминокислот в белках (первый белок — инсулин, был расшифрован еще в самом начале 50-х годов). Банк белковых последовательностей быстро пополнялся все новыми текстами. Был полностью расшифрован генетический код — словарь для перевода ДНКовых текстов на белковый язык. Но вот парадокс не было прочитано ни одного ДНКового текста  [c.64]

    Принцип этого метода в основном тот же, что и принцип метода, примененного Сенгером для определения последовательности аминокислот в молекуле инсулина. Вначале дыхательную цепь разделяют на фрагменты или механически (методом ультразвука), или путем разрушения липидного цемента детергентами, спиртами или дезоксихолевой кислотой. Затем фрагменты разделяют с помощью ультрацентрифугирования. Определяя химические и ферментные свойства этих фрагментов, можно реконструировать последовательность реакций интактной дыхательной цепи. Этот метод был впервые чрезвычайно успешно применен Грином и его сотрудниками. В целях удобства работу проводили почти исключительно на митохондриях животных. Дыхательная цепь особенно легко поддается расщеплению в некоторых точках, указанных на фиг. 62 буквами. При расщеплении в точке А из дыхательной цепи высвобождаются пиридинпротеиды, образуя фрагмент ( переносящую электрон частицу ), уже не способный окислять промежуточные продукты цикла Кребса, но получивший теперь способность окислять НАД-На (в отличие от интактных митохондрий). Таким образом, при расщеплении в точке А удаляются пиридин-протеиды, необходимые для дегидрирования кислот цикла Кребса, но в то же время открываются участки, пригодные для окисления НАД-Нг. Многочисленные исследования были проведены с так называемой переносящей электрон частицей . Расщепление в точках В Л О приводит к образованию фрагмента, обладающего сукци-нат-цитохром-с-редуктазной активностью, но не активного по отношению к связанным с пиридиннуклеотидами субстратам. Обычно наблюдается хорошее соответствие между ферментативной актив- [c.225]

    Два больших открытия, сделанные в 1953 г., ознаменовали наступление новой эры в биохимии. В этом году Джеймс Д. Уотсон и Фрэнсис Крик в Кембридже (Англия) создали модель структуры ДНК (двойную спираль) и высказали предположение о структурной основе точной репликации ДНК. В этом предположении, по существу (хотя и не в явной форме), была выражена идея о том, что последовательность нуклеотидных звеньев ДНК содержит в себе закодированную генетическую информацию. В том же году Фредерик Сэнгер, работавший в Кембридже в той же лаборатории, расшифровал последовательность аминокислот в полипептидных цепях гормона инсулина. Это достижение само по себе имело большое значение, так как в течение долгого времени считалось, что определение аминокислотной последовательности полипептида представляет собой совершенно безнадежную по трудности задачу. Но, кроме того, результаты, полученные Сэнгером, практически одновременно с появлением гипотезы Уотсона-Крика, тоже наводили на мысль о существовании какой-то связи между нуклеотидной последовательностью ДНК и аминокислотной последовательностью белков. В следующее десятилети Ь эта идея привела к расшифровке всех содержащихся в ДНК и РНК нуклеотидных кодовых слов, которые однозначно определяют аминокислотную последовательность белковых молекул. [c.146]

    Одна из вал нейших задач, стоящих перед исследователями, работающими в области химии белков, — выяснение последовательности расположения аминокислотных остатков в белковой молекуле. Это очень сложная, кропотливая, но вместе с тем очень важная работа, так как она дает возможность вплотную подойти к вопросу о химическом синтезе белковой молекулы из составляющих ее аминокислот. Эта задача была впервые решена Сэнджером в 1956 г., когда он полностью раскрыл последовательность расположения аминокислот во всей молекуле белка инсулина—гормона поджелудочной железы. В процессе этого исследования Сэнджер разработал ряд новых методических приемов определения последовательности аминокислот в [c.209]

    Определение последовательности аминокислот в полипентидной цепи отнюдь не простая задача. Лишь в 1955 г. Ф. Сэнгеру и его сотрудникам в Кембридже впервые удалось полностью расшифровать первичную структуру одного из белков — гормона инсулина, имеющего молекулярный вес 6000. [c.86]

    Полипептидный гормон инсулин участвует в регуляции углеводного обмена. Молекула бычьего инсулина содержит 51 аминокислоту и состоит из двух цепей. Последнее подтвернедается присутствием двух N-концевых аминокислот — глицина и фенилаланина. Цепь с N-концевым глицином называется А-цепью и содержит 21 аминокислоту цепь с N-концевым фенилаланином называется В-цепью, и в состав ее входит 30 аминокислот. Сэнгер и его сотрудники окислили инсулин надмуравьиной кислотой и провели хроматографическое разделение двух цепей. После этого каждую цепь подвергли ферментативному и кислотному гидролизу. На фиг. 27 и 28 указаны главные пептиды, полученные при гидролизе каждой из цепей, и приведены полные структуры цепей, установленные на основе этих данных. Видно, что места, в которых трипсин, химотрипсин и пепсин расщепляют цепи, согласуются с тем, что мы знаем о специфичности этих ферментов в отношении синтетических соединений. Обнаружено также и несколько дополнительных мест расщепления, в частности при гидролизе, катализируемом пепсином. Особо следует обратить внимание на то, что перекрывающиеся пептиды, полученные при использовании разных гидролитических методов, дополняют друг друга и позволяют однозначно установить общую аминокислотную последовательность. Для каждого из главных пептидов, приведенных на фиг. 27 и 28, аминокислотная последовательность была определена путем неспецифического гидролиза кислотой, установления последовательности аминокислот в образовавшихся ди-, три- и тетрапептидах и объединения полученных данных в общую картину. Как указывалось выше, в настоящее [c.91]

    Метод Мерифильда прост в техническом оформлении, что позволяет полностью автоматизировать процесс. Поэтому, хотя вышеупомянутые белки инсулин (51 аминокислота) и рибонуклеаза (124 аминокислоты) были синтезированы классическими методами, метод Мерифильда позволяет значительно сократить затраты труда и времени на синтез белков. Так рибонуклеаза была синтезирована Мерифильдом в 1968 г. менее чем за месяц, хотя синтез включал 369 последовательных реакций. [c.386]

    Определение последовательности аминокислот в полипептидной цепи стало возможным благодаря разработке и остроумному использованию метода введения метки в N-концевые аминокислоты пептидов, полученных при частичном гидролизе [29]. Кульминационным моментом исследований в этом панравлении явилась расшифровка аминокислотной последовательности инсулина [30]. После этого перк [c.99]

    Надмуравьиная кислота является сильным окислителем, и ее влияние на белок не ограничивается тем действием, которое она оказывает на остатки цистина. Триптофан под ее влиянием превращается в кинуренин и другие продукты разложения, метионин почти количественно превращается в метиоиинсульфон, тирозин также может изменяться. История использования этого реактива в работах, посвященных выяснению последовательности аминокислот, показывает, как по мере повышения размеров и сложности молекул исследуемых белков возникают новые трудности. Инсулин не содержит ни метионина, ни триптофана, но при действии надмуравьиной кислоты в присутствии хлорид-ионов образуется какое-то производное тирозина (возможно, хлорированный тирозин) [9]. Рибонуклеаза содержит еще одну аминокислоту — метионин однако, как показали работы лаборатории Рокфеллеровского института, в частичных гидролизатах рибонуклеазы легко обнаруживается метиоиинсульфон. Более того, оказалось, что удобнее иметь дело с полностью окисленным производным, чем с сульфоксидом или неизмененным метионином. Выход цистеиновой кислоты, образующейся при окислении белка, возможно не вполне количественный (см. величины, приведенные на стр. 84). Нельзя исключить участие остатков серина и треонина в реакции миграции ацила или формилирования под влиянием надмуравьиной кислоты (см. стр. 130). При наличии в белках триптофана возникает ряд затруднений этим объясняется то обстоятельство, что в последние годы исследователи постепенно отходят [c.97]

    В результате ферментативного воздействия, определяли последовательно после каждого отщепления Ы-концевого остатка по методу Эдмана (см. гл. 6). При изучении гемоглобина (Брауницер был удачно применен последовательный гидролиз белка разными про-теолитическими ферментами. В этом случае на белок действовали трипсином, а затем полученные пептиды гидролизовали пепсином, специфичность которого значительно повышали, ограничивая время реакции. Методические трудности, связанные с фракционированием сложных гидролизатов и определением полной структурной формулы белка, были преодолены в результате упорного труда нескольких групп ученых. Мы теперь знаем полную аминокислотную последовательность инсулина, глюкагона, рибонуклеазы, гемоглобина, белка вируса табачной мозаики, а также кортикотропина и других пептидных гормонов приближаются к завершению работы по установлению строения папаина, лизоцима, химотрипсиногена, трипсииогена, цитохрома с успешно продвигается изучение некоторых других белков. Изучение последовательности аминокислот проводилось на частичных кислотных гидролизатах или на гидролизатах, полученных при действии различных протеолитических ферментов. Чисто химические методы избирательного расщепления пептидных цепей не имели до сих пор значительного успеха, и эта область остается еще нерешенной задачей пептидно химии. [c.117]

    Конденсация 2,4-динитро-1-фторбензола (ДНФБ) со свободными аминогруппами инсулина в мягких условиях была описана Сэнджером в 1945 г. [1]. После гидролиза динитрофенилбелка (ДНФ-белка) в гидролизате были обнаружены ДНФ-производные глицина и фенилаланина, а также е-ДНФ-лизин. На молекулу с молекулярным весом 6000 приходилось по 1 моль ДНФ-глицина и ДНФ-фенилаланина. Было сделано заключение, что молекула инсулина состоит из двух различных цепей, одна из которых содержит К-концевой остаток глицина, а другая — Н-концевой остаток фенилаланина. Это подтвердилось при дальнейшем изучении последовательности аминокислот в инсулине [2]. [c.136]

    В дальнейших исследованиях Сенгер разработал, а впоследствии довел до полного совершенства, метод, позволивший определять последовательность аминокислотных остатков в полипетидных цепях. При этом он исходил из следующих, сформулированных им на симпозиуме по аминокислотам и белкам в Колд Спринг Харборе в 1949 г. положений Методом динитрофенилирования можно определить природу концевых групп путем идентификации ДНФ-аминокислот (динитрофенил-амино-кислот.—Л. Ш.), полученных при гидролизе ДНФ-белка. Однако, если гидролизовать ДНФ-белок лишь частично, можно получить ДНФ-пептиды, исследование строения которых дает указания относительно природы аминокислот, расположенных в пептидных цепях вблизи концевых групп. ДНФ-пептиды довольно хорошо поддаются отделению от незамещенных пептидов и аминокислот путем экстракции органическим растворителем из подкисленного раствора и хроматографическим фракционированием на силикагеле. Смеси ДНФ-пептидов, полученные этим способом, гораздо менее сложны, чем продукты частичного гидролиза необработанного белка, так как отделяются только пептиды, содержащие М-концевые группы исходного белка. Для дальнейшего упрощения анализа последовательности аминокислот вместо инсулина были взяты очищенные фракции А и В, образующиеся при его окислении и содержащие только по одной концевой группе [37]. [c.133]

chem21.info

Инсулин содержание аминокислот - Справочник химика 21

    Гормоны панкреатической (поджелудочной) железы. Панкреатическая железа — железа и внешней и внутренней секреции. В ткани поджелудочной железы имеются группы клеток в виде маленьких островков, которые не связаны с протоками железы. Эти островки получили название островков Лангерганса в них вырабатывается гормон панкреатической железы — инсулин. Островки Лангерганса обильно снабжены кровеносными сосудами, поэтому инсулин легко проникает в кровяное русло. Инсулин оказывает сильное влияние на углеводный обмен понижает содержание сахара в крови, активирует синтез гликогена из глюкозы, увеличивает клеточную проницаемость по отношению к глюкозе кроме того, инсулин активирует синтез белков из аминокислот и тормозит образование углеводов из белков и жиров. [c.146]     Адреналин и глюкагон осуществляют регуляцию метаболизма гликогена путем изменения активности гликогенфосфорилазы и гликогенсинтазы (через цАМФ) таким образом, что торможение гликогеногенеза и стимуляция гликогенолиза осуществляются одновременно, т. е. реципропно. Глюкокортикоиды (11-гидроксистероиды) усиливают глюконеогенез за счет интенсификации катаболизма белков и аминокислот в тканях и вовлечения промежуточных метаболитов в процесс глюконеогенеза. Таким образом, в рассмотренных случаях адреналин, глюкагон, глюкокортикоиды действуют как антагонисты инсулина. На содержание сахара в крови влияет также гормон щитовидной железы тироксин (подобно инсулину). Гормоны передней доли гипофиза — гормон роста (соматотропин), АКТГ и, вероятно, другие факторы повышают уровень сахара в крови, однако механизмы действия этих гормонов в значительной степени являются опосредованными, поскольку они стимулируют мобилизацию из жировой ткани свободных жирньгх кислот, которые являются ингибиторами потребления глюкозы. [c.283]

    Углеводный обмен. В плане влияния на углеводный обмен гормон роста является антагонистом инсулина. Гипергликемия, возникающая после введения ГР,— результат сочетания сниженной периферической утилизации глюкозы и ее повышенной продукции печенью в процессе глюконеогенеза. Действуя на печень, ГР увеличивает содержание в ней гликогена, вероятно, вследствие активации глюконеогенеза из аминокислот. ГР может вызывать нарушение некоторых стадий гликолиза, а также торможение транспорта глюкозы. Обусловлен ли данный эффект прямым действием ГР на транспорт или он является результатом подавления гликолиза, пока не установлено. Ингибирование гликолиза в мышцах может быть также связано с мобилизацией жирных кислот из триацилглицероловых резервов. При длительном введении ГР существует опасность возникновения сахарного диабета. [c.175]

    При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание—диабет (см. главу 10). Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена. Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует). К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови. При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно. Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина. Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора (см. далее). [c.269]

    У человека и высщих животных имеется ряд специальных органов (эндокринных желез или, как их раньше называли, желез внутренней секреции ), которые вырабатывают и направляют в кровь или лимфу особые вещества, являющиеся внутренними химическими регуляторами многочисленных биологических процессов, происходящих в организме. У человека различные гормоны вырабатываются щитовидной железой (тироксин и родственные йодированные аминокислоты), па-ращитовидными железами (особый гормон, регулирующий обмен кальция и фосфора), надпочечниками (адреналин, стероидные гормоны, регулирующие либо обмен углеводов, либо содержание неорганических ионов в крови), поджелудочной железой (инсулин, глюкагон), гипофизом (большое число пептидных и белковых гормонов, регулирующих ряд функций), семенниками и яичниками (половые гормоны) некоторые гормоны образуются в кишечнике и желудке. [c.81]

    Сера. По содержанию в организме человека (мае. доля 0,16 %) (см. табл. 5.3) сера относится к макроэлементам. Как и кислород, она жизненно необходима. Суточная потребность взрослого человека в сере около 4—5 г. Сера входит в состав многих биомолекул — белков, аминокислот (цистина, цистеина, метионина и др.), гормонов (инсулина), витаминов (витамин Bi). Много серы содержится в каротине волос, костях, нервной ткани. [c.365]

    В физиологической регуляции синтеза инсулина доминирующую роль играет концентрация глюкозы в крови. Так, повышение содержания глюкозы в крови вызывает увеличение секреции инсулина в панкреатических островках, а снижение ее содержания, наоборот,— замедление секреции инсулина. Этот феномен контроля по типу обратной связи рассматривается как один из важнейших механизмов регуляции содержания глюкозы в крови. На секрецию инсулина оказывают влияние, кроме того, электролиты (особенно ионы кальция), аминокислоты, глюкагон и секретин. Приводятся доказательства роли циклазной системы в секреции инсулина. Предполагают, что глюкоза действует в качестве сигнала для активирования аденилатциклазы, а образовавшийся в этой системе цАМФ —в качестве сигнала для секреции инсулина. [c.269]

    За последнее десятилетие были достигнуты значительные успехи в дальнейшем установлении точного строения различных белков. Хотя гидролиз белков и последующий анализ гидролизата, который широко использовался раньше, давал возможность получать данные об относительном содержании и природе входящих в состав белка аминокислот, он не позволял сделать какие-либо выводы о распределении аминокислот в полипептидной цепи молекулы белка. Методы анализа и разделения аминокислот до сороковых годов были очень длительными и трудоемкими н требовали сравнительно больших количеств исходного продукта. Разработанные в 40-х годах новые методы анализа и разделения аминокислот и определения концевых групп в молекулах белков и не слишком высокомолекулярных полипептидов создали возможность наметить основные направления решения исключительно важной проблемы выяснения специфической последовательности аминокислот в молекулах некоторых сравнительно простых белков. Первым большим достижением в этой области химии была расшифровка Сангера с сотр. [4] последовательности аминокислот в молекуле инсулина. С момента опубликования этой важнейшей работы, достигшей цели, которая в течение длительного времени казалась неосуществимой, была полностью выяснена последовательность аминокислот у нескольких белков. Установление того факта, что молекулы специфического белка являются однородными по молекулярному весу и содержат строго определенную последовательность аминокислотных звеньев, неизменную для всех макромолекул, явилось одним из наиболее важных достижений химии белка. В число белков, для которых была выяснена последовательность аминокислот, входят инсулин [4], цитохром С [5—7 , белок вируса табачной мозаики [8—10], рибонуклеаза [11 — 13], а- и Р-цепи гемоглобина человека [14, 15], миоглобин кита [16—18], кортикотропин [19—21], глюкагон [22] кроме того, была установлена последовательность аминокислот в некоторых полипептидах более низкого молекулярного веса и частично выяснена последовательность аминокислот у нескольких высокомолекулярных белков [23]. [c.329]

    Приведенные в табл. 6.1 данные показывают, что аминокислотный состав представленных белков существенно различается. Например, в гормоне инсулине отсутствуют триптофан и метионин, а В миоглобине — цистеин н цистин. В табл. 6.1 содержание различных аминокислот выражено в граммах на 100 г исходного белка при суммировании получим, что на 100 г белка приходится 118 г аминокислот (с учетом одной молекулы воды на каждую гидролизуемую пептидную связь). Если же при расчете содержания аминокислот учитывать массу аминокислотных остатков, а ие свободных аминокислот, то суммарное содержание аминокислот в белке, не содержащем неаминокислотных компонентов, должно составлять 100%. Приведем пример такого расчета. При гидролизе инсулина образуется 8,6 г свободного фенилаланина на 100 г белка (табл. 6.1). В пересчете на массу аминокислотного остатка это составляет 8,6-147/165=7,7 г на 100 г белка, поскольку молекулярная масса фенилаланина 165, а масса остатка фенилаланина в белках 147. [c.168]

    Синтез белка. ГР стимулирует транспорт аминокислот в мышечные клетки и, кроме того, усиливает синтез белка, причем независимо от влияния на транспорт аминокислот. У животных, получающих ГР, возникает положительный азотный баланс, что отражает общее повышение белкового синтеза и снижение содержания аминокислот и мочевины в плазме и моче. Указанные изменения сопровождаются повышением уровня синтеза РНК и ДНК в отдельных тканях. В этом отношении действие ГР сходно с некоторыми эффектами инсулина. [c.175]

    Избыточная секреция инсулина поджелудочной железой способствует повышенной утилизации печенью глюкозы, находящейся в крови это приводит к гипогликемии. Кроме того, при высоком содержании инсулина происходит замедление катаболизма аминокислот и жирных кислот. Таким образом, в крови больных оказывается мало субстратов энергетического обмена, необходимых для образования АТР, Если состояние гиперинсулинизма продолжается долго, то возникает поражение клеток мозга, поскольку глюкоза служит для мозга основным источником энергии. [c.1000]

    Инсулин. Интересно, что инсулин отличается относительно высоким содержанием цистина и не содержит метионина, так же как из ароматических аминокислот в нем преобладает тирозин и совсем нет триптофана. [c.234]

    В отсутствие инсулина снижается биосинтез белка, что отчасти объясняется уменьшением транспорта аминокислот в мышцы (аминокислоты служат субстратами для глюконеогенеза). Таким образом, инсулиновая недостаточность у человека сопровождается отрицательным азотным балансом. Характерное для этой ситуации отсутствие антилиполити-ческого действия инсулина, равно как и его липогенного действия, приводит к тому, что содержание жирных кислот в плазме возрастает. Когда оно достигает уровня, превышающего способность печени окислять жирные кислоты до СО,, в крови накапливаются Р-гидроксимасляная и ацетоуксусная кислоты (кетоз). Вначале организм компенсирует накопление этих органических кислот увеличением количества выдыхаемого СО2. Однако если развитие кетоза не сдерживается введением инсулина, то развивается тяжелый метаболический ацидоз и больной погибает от диабетической комы. Механизм инсулиновой недостаточности схематически представлен на рис. 51.11. [c.255]

    Глубокий распад аминокислот, их диссимиляция, имеет место не только при нормальном питании, когда они образуются в результате переваривания белков. Распад аминокислот, правда в меньшем объеме, происходит также при низком содержании и даже при отсутствии белков в пище. Известно, что при безбелковом питании из организма с мочою выделяют конечные продукты азотистого обмена, освобождающиеся в результате превращений аминокислот. Следует также учесть, что часть аминокислот, образующаяся при распаде тканевых белков, используется для синтеза ряда азотистых соединений, входящих в состав тканей. Так, например, для синтеза креатина (стр. 403) используются глицин, аргинин и метионин (последние две аминокислоты относятся к числу незаменимых аминокислот) карнозин и ансерин синтезируются (стр. 409) из незаменимой аминокислоты гистидина. Аминокислоты используются также для синтеза гормонов белковой природы (инсулина, глюкагона, гормонов гипофиза и др.). Адреналин и тироксин синтезируются из незаменимой аминокислоты фенилаланина. Следовательно, некоторая часть аминокислот, образующаяся в результате распада белков тканей в организме при недостатке или отсутствии белков в пище, расходуется на синтез различных биологически важных веществ Часть незаменимых аминокислот постоянно расходуется как при нормаль ном питании, так и при белковом голодании. В последнем случае, т. е при белковом голодании (само собой разумеется, что и при полном голо Дании) должен ощущаться недостаток в незаменимых аминокислотах Между тем для синтеза подвергающихся распаду тканевых белков, необхо димо наличие полного набора всех аминокислот в соответствующих количе-ствах. При недостатке, а тем более при отсутствии тех или иных незаменимых аминокислот, синтез белков тканей уменьшается или вовсе прекращается. Следовательно, аминокислоты, образующиеся в процессе распада тканевых белков при голодании, если не полностью, то в значительной мере, не могут быть использованы для синтеза белков и подвергаются распаду с освобождением конечных продуктов аммиака, углекислого газа и воды. При наличии белков в пигце избыточное количество аминокислот, всасывающееся [c.343]

    Из физико-химических констант белков важнейшая — это молекулярный вес. Сейчас имеется много методов измерения молекулярного веса белков. В частности, химический анализ зачастую дает возможность очень точного определения молекулярного веса. Так, например, в ципк-ннсулине один атом цинка связан с одной молекулой белка, п потому достаточно точно определить весовое содержание цинка в кристаллическом инсулине, чтобы рассчитать молекулярны11 вес. Таким же образом в мио-глобине имеется геминовая группа, т. е. один атом железа на белковую макромолекулу. Иногда белок содержит очень мало какой-либо одной аминокислоты и можно воспользоваться анализом на содержание этой аминокислоты, чтобы рассчитать молекулярный вес. Часто этот метод применяется в сочетании с другими. [c.111]

    В 1964 г. инсулин был синтезирован из отдельных аминокислот. Этот гормон снижает содержание глюкозы в крови, усиливая образование гликогена в печени и мышцах, стимулирует процессы окислительного фосфорилирования, синтез жирных кислот и белков. [c.57]

    Применение динитрофенильных производных, введенных в практику Зангером [25] с целью идентификации и количественного определения концевых аминогрупп, позволяет получить ценные сведения о количестве открытых цепей в белке. Кроме того, такие меченые аминокислоты служат в качестве реперных точек при исследовании неполного гидролиза (1346). В этом отношении полезными являются также е -аминогруппы лизина. Путем неполного гидролиза, осуществляемого с помощью кислоты и различных типов ферментов, оказалось возможным разрывать длинные полипептидные цепи в различных точках и путем анализа установить единственно возможную конфигурацию. Этим способом Зангер и Таппи[99]и Зангер и Томпсон [100] определили порядок чередования аминокислот в двух типах цепей, входящих в состав инсулина (табл. 27). Такой подход к проблеме структуры белка был облегчен широким применением новейших микрометодов хроматографии на бумаге и силикагеле и ионофореза. Таким образом, оказывается, что одна из крупнейших проблем химии белка поддается изучению с помощью весьма простых и экономичных методов. Цепи в инсулине имеют различную длину, причем цепь с N-концевым фенилаланином (цепь В) состоит из 30 остатков, а соответствующая глициновая цепь (цепь А) — из 21 остатка. Порядок чередования аминокислот и их содержание даны в табл. 27. Можно отметить следующее. Цепь А не содержит лизина, гистидина, аргинина, треонина, фенилаланина и пролина все эти компоненты входят в состав цепи В, в которой, в свою очередь, совсем нет изолейцина. Не наблюдается ни регулярного чередования аминокислот, ни тенденции к чередованию полярных и неполярных групп. Три ароматические аминокислоты (фен.фен.тир.) расположены последовательно, и два остатка глутаминовой кислоты связаны с двумя остатками ци-стеина (глу.глу.цис.цис.). В обеих цепях содержится шесть цистеиновых остатков, четыре из которых расположены врозь, а только что упомянутые два — рядом друг с другом в молекуле нативного белка все они существуют в форме цистина, но какие из них расположены между пептидными цепями, а какие в самих пептидных цепях — неизвестно. Часть дикарбоновых кислот присутствует в виде амидов — четыре в цепи А и две в цепи В. [c.255]

    Было бы полезно определять у пациентов, страдающих диабетом, и другие субстраты (табл. 36.1). При физиологически наиболее целесообразном ежедневном введении инсулина возрастает риск острых обострений диабета при других болезнях (например, инфекции), и желательно было бы иметь прибор, предупреждающий о высоком уровне содержания кетонов (например, 3-гидроксибутирата) в крови. Для этой цели снова наиболее пригодны накожные и подкожные сенсоры (или детекторы ацетона в выдыхаемом воздухе). Быстрое увеличение концентрации лактата в крови может наблюдаться не только в отделениях интенсивной терапии. В отсутствие физической нагрузки это свидетельствует о сверхбыстром увеличении скорости оборота глюкозы, связанном с передозировкой инсулина. Объединение лактатного сенсора и сенсора глюкозы, контролирующего подачу инсулина, могло бы быть первым шагом к достижению совершенства, свойственного природным В-клеткам. Следующими кандидатами на постоянный контроль в системе искусственной поджелудочной железы являются аминокислоты. [c.574]

    На обмен белков соматотропин действует подобно (синергично) инсулину увеличивает транспорт аминокислот в мыщцы усиливает биосинтез ДНК, РНК и белков снижает содержание аминокислот и мочевины в моче обеспечивает положительный азотистый баланс. [c.404]

    Инсулин — белково-пептидный гормон, вырабатываемый островками поджелудочной железы. Является регулятором углеводного обмена в органиа-ме — стимулирует усвоение глюкозы и ее превращение в гликоген, при введении в организм понижает содержание сахара в крови. Молекула инсулина включает не менее 707 атомов и состоит из двух пептидных цепей, включающих 21 и 30 остатков аминокислот, цепи соединены двумя мостиками —8—5—, а один дисульфидный мостик имеется в более короткой цепи. Молекулы инсулина склонны к агрегации (с обраэованц от димеров до гексамеров) в присутствии ионов 2п +. Инсулин — первый белок, строение которого было расшифровано и воспроизведено в лаборатории. Используется для лечения диабета (сахарной болезни), [c.557]

    Препараты окситоцина и питрессина содержат соответственно 3,06 и 3,10% серы и 14,3 и 10,5% тирозина [58]. Следует напомнить, что высокое содержание серы и тирозина характерно также и для препаратов инсулина. Гормоны задней доли гипофиза во многом напоминают инсулин и по физико-химическим свойствам. Они также расщепляются протеолитическими ферментами на аминокислоты [59] и инактивируются восстановителями, например цистеином [60]. Однако в отличие от инсулина они реактиви- [c.318]

    Последние четыре белка, приведенные в табл. 42, — гормоны, но и здесь нет заметного. различия в содержании разных аминокислот, кроме тиреогло 5улина, в состав которого входят иодированные аминокислоты. В инсулине много цистеина и цистина, но их много и в кератине. Известно также, что аминокислотный состав высокоспецифичных белков зависит от источника выделения, что было показано, например, на инсулине (Хкрфенист, 1953). [c.656]

    В первых опытах Мишера по выделению нуклеина из клеток гноя, проведенных около века назад, было установлено, что в ядрах эукариотов отрицательно заряженная ДНК находится в комплексе с примерно равным по массе количеством положительно заряженных основных белков. В своей работе, проведенной в начале века, Коссель установил не только природу химических компонентов ДНК, но также выяснил состав связанных с ДНК основных белков. Из этих белков наиболее важное значение имеют гистоны, которые представляют собой полипептидные цепи длиной от 50 до 200 аминокислотных остатков. Положительный заряд ги-стонов обусловлен высоким содержанием в них трех основных аминокислот аргинина, лизина и гистидина, в боковых цепях которых имеется вторая аминогруппа (фиг. 15) па их долю приходится почти 25% всех аминокислот гистонов. Интересно сравнить высокое содержание основных аминокислот в гистонах с данными об аминокислотном составе различных белков, представленными в табл. 2, из которых видно, что основные аминокислоты составляют лишь от 8 до 12% всех аминокислотных остатков таких белков, как р-галактозидаза, А-полипептид триптофан-синтазы Е. oli и бычий инсулин. Взаимодействие между ДНК и гистонами в хромосоме происходит, вероятно, благодаря образованию ионных связей между фосфатными группами полинуклеотидной цепи и боковыми аминогруппами полипептидной цепи. На долю ДНК и гистонов приходится около 3 всей массы большинства хромосом остальную часть обычно относят на счет негистонных белков и РНК. [c.498]

    Противоинсулярное действие гормонов передней доли гипофиза было показано с особой наглядностью на депанкреатизированных (т. е. лишенных поджелудочной железы) собаках с тяжелой формой диабета. Как оказалось, у таких оперированных животных можно резко снизить концентрацию сахара в крови не только путем введения инсулина, ио и путем удаления гипофиза. Это говорит о том, что у нормальных животных стимулирующее действие гормона передней доли гипофиза на процессы сахарообразования в печени уравновешивается тормозящим действием на эти же процессы инсулина, в результате чего содержание сахара в плазме крови удерживается в пределах нормы. При удалении же поджелудочной железы, т. е. при отсутствии инсулина, образование сахара из гликогена и безазотистых остатков аминокислот в печени, стимулируемое гормонами передней доли гипофиза, происходит с большей интенсивностью и приводит к развитию тяжелой гипергликемии. [c.247]

    В жировой ткани уменьшается утилизация глюкозы и снижается ингибирующее действие инсулина на липолиз, жир мобилизуется в виде свободных жирных кислот и глицерола. Свободные жирные кислоты переносятся в другие ткани, где они либо окисляются, либо эстерифицируются. Глицерол после активации (превращения в глицерол-З-фосфат) поступает в углеводный пул (в основном в печени и почках). Во время перехода от сытого состояния к голоданию эндогенное образование глюкозы (из аминокислот и глицерола) отстает от ее использования и окисления, запасы гликогена в печени истощаются и концентрация глюкозы в крови падает. Мобилизация жира возрастает в течение нескольких часов, затем содержание свободных жирных кислот в плазме и глюкозы в крови стабилизируется на уровне, характерном для состояния голодания (0,7 —0,8 мкмоль мл и 60—70 мг/100 мл соответственно). Можно полагать, что при этом уровне глюкозы в крови животного ее поступление в ткани обеспечивает потребности утилизации и окисления. Компенсаторное увеличение окисления жирных кислот и ке тоновых тел позволяет снизить уровень окисления [c.297]

    Инсулин состоит из 51 аминокислотного остатка, которые составляют две цепи цепь А (21 остаток), цепь В (30 остатков). Обе цепи связаны двумя дисульфидными мостиками. Цепь А содержит третий дисульфидный мостик, замыкающий петлю, состоящую -из шести аминокислотных остатков. Последовательность аминокислот в инсулине определена [78] и проведено его рентгеноструктурное исследование [79]. Цепь А имеет сильно свернутую структуру с короткими квазиспиральными участками. Участки а-опиралей имеются в цепи В между дисульфидными мостиками. Низкая молекулярная масса (5780), казалось бы, делает инсулин привлекательным объектом для исследования с помощью ЯМР, тем не менее еще нет публикаций об изучении этим методом нативного белка. Отчасти, видимо, это объясняется тем, что в нем не выделен активный центр . Гормональная функция инсулина — способность понижать содержание сахара в крови —хорошо известна, но непонятна с химической точки зрения. Инсулин обладает ярко выраженной способностью образовывать полимеры. Димер и гексамер хорошо охарактеризованы [79]. В димере наблюдается интересное окружение (по типу ящика ) остатков Тир-26 (В) и Фен-24 (В), а также остатков во второй входящей в димер молекуле, связанных с двумя первыми осью симметрии второго порядка. Это явление представляет несомненный интерес для изучения на частоте 220 МГц. [c.384]

    Отмеченная выше оговорка имеет особое значение в случае кератинов. Это связано с тем, что белки кератинов содержат аномально большое количество одной из аминокислот—цистина. Пептидные остатки такой аминокислоты содержат дисульфидные связи, которые образуют сшивки между удаленнымн друг от друга остатками одной и той же или различных полипептидных цепей. (См., например, дисульфидные сшивки в инсулине, показанные на рис. 2). Если многие из этих поперечных связей существуют между участками одной и той же цепи, то в этом случае, очевидно, нельзя ожидать образования непрерывной а-спирали, однако рентгенограммы кератина, как правило, свидетельствуют об а-спиральной структуре. Этот факт, несомненно, объясняется составом кератинов. Недавно было открыто , что кератин шерсти состоит из нескольких различных по химическому составу белков и что некоторые из них (составляющие от 30 до 40% от общего количества белка) характеризуются очень низким содержанием серы в противоположность кератину как целому, который содержит много серы. Несомненно, что именно эти белки обусловливают а-спираль-ную структуру кератина шерсти. Вероятно, подобное положение имеет место и для других кератинов. [c.72]

    На обмен углеводов соматотропин действует противоположно (антагонист) инсулину вызывает гипергликемию (снижение периферической утилизации глюкозы и повыщение продукции глюкозы печенью в глюконеогенезе) повыщает содержание гликогена в печени, возможно, за счет глюконеогенеза из аминокислот тормозит гликолиз в мыщцах из-за ингибирующего действия жирных кислот, освобождающихся при липолизе жира в липоцитах при длительном введении вызывает сахарный диабет. [c.404]

    На содержание фиптофана, а следовательно, и серотонина в мозге оказывает влияние характер используемой пищи оно возрастает при приеме полноценных белков и богатой углеводами пищи. Углеводы стимулируют освобождение инсулина, который способствует поступлению в мыщцы, а следовательно, удалению из циркуляции разветвленных аминокислот — конкурентов ароматических аминокислот за транспортные системы ГЭБ мозга. Таким образом, снижение уровня разветвленньга аминокислот в плазме крови приводит к повышению транспорта ароматических аминокислот в мозг. Влияние пищи на поведение людей многие исследователи связывают отчасти с изменением уровня ароматических аминокислот в мозге, а отсюда и уровня биогенных аминов. [c.63]

    Глюкагон синтезируется альфа-клетками островковой ткани поджелудочной железы. Его действие противоположно действию инсулина. Глюкагон стимулирует расщепление гликогена в печени и таким образом повышает содержание глюкозы в крови, а также способствует образованию глюкозы в печени из аминокислот и жиров при истош ении запасов гликогена, активирует распад жиров (липолиз) в жировой ткани. Следовательно, действие его направлено на мобилизацию энергетических запасов организма при увеличении энергетических потребностей. [c.144]

    Глюкагон. Повышение содержания сахара в крови после введения экстрактов поджелудочной железы происходит не только вследствие действия фермента инсулиназы, влияющей на активность инсулина, но и под влиянием полипептида, получившего название глюкагон. Этот гипер-гликемический фактор образуется в а-клетках островковой ткани поджелудочной железы его молекулярный вес составляет около 3500. Последовательность аминокислот в этом полипептиде определена. Внизу страницы приведено его строение. [c.351]

    Г. Свойства проинсулина и С-пептида. Длина про-инсулинов колеблется от 78 до 86 аминокислот, причем эти различия обусловлены длиной С-пептида. Проинсулин имеет ту же растворимость и изоэлек-трическую точку, что и инсулин. Он также образует гексамеры с кристаллами цинка и реагирует с антисывороткой к инсулину. Биологическая активность лроинсулина составляет менее 5% биологической активности инсулина. Отсюда следует, что большая часть активного центра инсулина в молекуле предшественника замаскирована. Некоторая часть проинсулина секретируется вместе с инсулином, а в определенных ситуациях (опухоль из островковых клеток) он высвобождается в больших количествах, чем в норме. Поскольку период полужизни проинсулина в плазме значительно выше, чем у инсулина, и при этом проинсулин дает сильную перекрестную реакцию с антисывороткой к инсулину, уровень инсулина , определяемый радиоиммунологическим методом, в некоторых случаях может превышать содержание биологически активного гормона. [c.251]

    На содержание глюкозы в крови, кроме адреналина, инсулина и глюкагона, влияют также и некоторые другие гормоны. Так, например, установлено, что гормон коры надпочечников, кортикостерон при введении ertj в организм вызывает гипергликемию. Подобным же образом действует гормон щитовидной железы тироксин. Следует, однако, отметить, что кортикостерон, в отличие от адреналина и глюкагона, не стимулирует распад гликогена в печени, а вызывает гипергликемию, усиливая образование глюкозы в организме из других веществ (из продуктов дезаминирования аминокислот и возможно из глицерина и жирных кислот). На содержание глюкозы в крови и гликогена в печени ] лияют и гормоны передней доли гипофиза. Действие их, однако, не прямое, а косвенное. В передней доле гипофиза образуются адренокортикотропный (стр. 158) и тиреотропный гормоны. Первый из них стимулирует образование в корковой части надпочечников гормонов (кортизона), второй— образование в щитовидной железе тироксина. Как кортизон, так и тироксин повышают содержание глюкозы в крови. [c.275]

    Содержание ам1шогрупп белков проверяли определением лизина на анализаторе аминокислот "LKB 3201". Найдено количество лизиновых остатков для оС гказеина в расчете на молек. массу 23616 составило 15,1 (лит. -14), для инсулина в расчете на молек. массу 5730-0,93 (лит. -1). [c.213]

    Повыщенное содержание сАМР индуцирует ряд ферментов глюконеогенеза, стимулируя превращение аминокислот в глюкозу. Главная роль среди этих ферментов принадлежит ФЕПКК. Глюкагон опосредованно через с АМР повышает скорость транскрипции гена ФЕПКК, стимулируя тем самым синтез больших количеств ФЕПКК. Этот эффект противоположен действию инсулина, который подавляет транскрипцию гена ФЕПКК. Другие примеры приведены в табл. 51.7. Суммарный эффект тлю- [c.264]

chem21.info

Инсулинотерапия

Инсулин является гормоном, состоящим из аминокислот. Клетки поджелудочной железы вырабатывают проинсулин, являющийся неактивным. В результате действия ферментов образуется активный инсулин. Он поступает в кровоток и попадает в печень. В печени половина поступившего инсулина связывается с рецепторами. Остальная часть гормона поступает в общий кровоток, а затем в мышцы и жировую клетчатку. Основная доля гормона, около 80%, перерабатывается в печени и почках. Остальная часть перерабатывается в мышечной и жировой ткани. Выделение инсулина поджелудочной железой делится на базальное и пищевое. Базальное выделение обеспечивает оптимальное содержание глюкозы в крови в перерывах между приемами пищи. Пищевое выделение инсулина происходит после приема пищи, в результате которого уровень глюкозы в крови повышается. В течение суток также происходит колебание выделения инсулина. Наибольшее его количество вырабатывается в ранние утренние часы, наименьшее — в вечернее время. Для лечения сахарного диабета наилучшим препаратом является человеческий инсулин, получаемый полусинтетическим или биосинтетическим методом. Полусинтетический метод заключается в замене одной аминокислоты на другую в свином инсулине. Биосинтетический метод заключается в том, что в генетический материал кишечной бактерии или дрожжевой культуры встраивают участок генетического материала человека, который отвечает за образование инсулина. В результате данной манипуляции микроорганизмы начинают выделять человеческий инсулин.

Препараты инсулина делятся на препараты короткого и пролонгированного действия. Препараты короткого действия подвергаются быстрому всасыванию, что обеспечивает большую концентрацию инсулина в крови. Инсулины короткого действия имеют несколько путей введения: подкожный, внутримышечный, внутривенный. Инсулины пролонгированного действия подразделяются на 2 группы: среднего действия и длительного действия. Препараты средней длительности действия медленно всасываются, что обеспечивает начало их действия примерно через 1 —1,5 ч после введения. Препараты длительного действия состоят из крупных кристаллов, что обеспечивает еще более медленное всасывание. Препараты этой группы начинают действовать через 4—5 ч после введения. Длительность их действия составляет 28—36 ч. Максимум действия достигается спустя 8—14 ч после введения. Несмотря на столь продолжительное действие препаратов данной группы, одной инъекции в сутки обычно не хватает. Это объясняется невозможностью обеспечения данными препаратами достаточного уровня инсулина в крови в течение суток.

Существует ряд показаний для инсулинотерапии. К ним относятся: сахарный диабет I типа, удаление поджелудочной железы, невозможность достигнуть восстановления обменных процессов диетой при сахарном диабете во время беременности, а также ряд состояний, возникающих в процессе течения сахарного диабета II типа. К таким состояниям относятся: кома, прекоматозное состояние, прогрессирующее снижение массы тела, состояние кетоацидоза, содержание глюкозы в крови натощак более 15 ммоль/л, невозможность достижения нормального обмена веществ на фоне назначения таблетированных сахароснижающих препаратов в максимальной суточной дозе, появление и быстрое прогрессирование поздних осложнений сахарного диабета, различные хирургические вмешательства.

Существует несколько принципов лечения препаратами инсулина. Первый принцип состоит в том, что необходимое количество инсулина в течение суток обеспечивается двукратным введением препаратов инсулина — утром и вечером. Второй принцип заключается в том, что замена выработки инсулина поджелудочной железой происходит за счет введения перед каждым приемом пищи препаратов короткого действия. Доза препарата рассчитывается исходя из предполагаемого количества углеводов, которое человек планирует принять. Кроме этого, учитывается имеющийся уровень глюкозы в крови перед приемом пищи. Данный уровень сахара крови определяется самостоятельно при помощи индивидуального глюкометра.

Лица, страдающие сахарным диабетом II типа, в большинстве случаев не нуждаются в приеме препаратов инсулина. Все же в некоторых случаях необходимо принимать такие препараты. Такие люди делятся на две группы. Первая группа включает в себя лиц молодого возраста (28—40 лет), у которых отсутствует ожирение. Вторая группа включает лиц, страдающих сахарным диабетом II типа, которые в течение длительного времени применяли для лечения препараты сульфанилмочевины, на фоне чего у них развилась устойчивость к этой группе лекарственных веществ.

Выделяют несколько тактик лечения инсулином. Иногда лечение инсулином является временным и может продолжаться от нескольких недель до нескольких месяцев. Такая тактика используется при отсутствии истинного дефицита инсулина. Отмена введения инсулина в данном случае происходит постепенно.

Другая тактика лечения заключается в назначении инсулина в комбинации с таблетированными сахаропонижающими препаратами с самого начала. Дозировка инсулина производится при учете следующих данных: содержание глюкозы в крови, время суток, количество хлебных единиц, которое предполагается употребить, а также интенсивность физической нагрузки до и после принятия пищи. Временной промежуток между введением инсулина и приемом пищи подбирается индивидуально. В большинстве случаев данный интервал составляет от 15 до 30 мин. Одной из целей лечения инсулином является нормализация уровня сахара крови натощак. Вечерняя доза инсулина вводится примерно в 22—23 ч, так как его действие наступает через 8—9 ч.

При введении большого количества инсулина вечером к 2—3 ч ночи развивается состояние гипогликемии (чрезмерного снижения уровня сахара крови). Это может проявляться расстройствами сна с кошмарными сновидениями, могут начаться какие-либо бессознательные действия, в утреннее время можно отметить появление головной боли и состояния разбитости. Развитие состояния гипогликемии в ночное время вызывает выброс в кровоток гормона глюкагон, под влиянием которого уровень сахара крови к утреннему времени чрезмерно повышается. Данное явление носит название феномена Сомоджи. Ближе к утру действие инсулина снижается и может прекратиться вовсе, что также вызывает повышение уровня глюкозы в крови. Данное явление носит название феномена «утренней зари».

При сахарном диабете используют подкожное введение инсулина. Внутримышечное и внутривенное введение используется в неотложных ситуациях. Начало эффекта после введения инсулина короткого действия зависит от места инъекции. Наиболее быстрое действие отмечается при введении под кожу живота. Эффект наблюдается спустя 15—30 мин, достигая максимума через 45—60 мин. Наиболее медленное действие наблюдается при введении под кожу бедра. Начало эффекта отмечается спустя 1 — 1,5 ч, при этом всасывается только 75% от всего введенного инсулина. Промежуточное положение занимают инъекции в область плеча. Рекомендуется вводить инсулин короткого действия под кожу живота, а под кожу плеча или бедра — инсулин средней продолжительности действия. Скорость всасывания инсулина увеличивается при разогревании места введения. Место введения препарата должно постоянно меняться. Расстояния между инъекциями должны быть не менее 12 см.

В настоящее время широко распространено введение инсулина при помощи шприц-ручек. Инсулинотерапия сопровождается рядом осложнений. Наиболее часто встречается состояние гипогликемии (чрезмерного снижения уровня сахара крови) и гипогликемической комы. Последняя является наиболее опасным осложнением. Кроме этого, могут отмечаться аллергические реакции, которые могут быть как местными, так и общими. Местные аллергические реакции располагаются в месте введения инсулина и могут проявляться зудом, покраснением или уплотнением. Общие аллергические реакции проявляются крапивницей, отеком Квинке или анафилактическим шоком. Последние встречаются крайне редко.

Виды инсулина

В настоящее время используется свиной инсулин и человеческий инсулин.

Инсулин различается и по длительности действия.

Короткий инсулин начинает действовать через 15— 20 мин. Максимальный эффект наступает через 1 —1,5 ч и заканчивает свое действие через 3—4 ч.

Инсулины средней продолжительности начинают свое действие через 1,5—2 ч, с максимальным эффектом через 4—5 ч и заканчивают действие через 6—8 ч.

Инсулины длительного действия начинают свое действие через 3—4 ч. Достигают максимального эффекта через 6 ч. Продолжительность их действия 12— 14 ч.

Кроме этого, существуют и инсулины сверхдлительного действия. Они начинают свое действие через 6— 8 ч. Достигают максимального эффекта через 10—16 ч и заканчивают свое действие через 24—26 ч.

Также есть так называемые многопиковые инсулины, когда в одном флаконе в определенных пропорциях смешаны инсулины короткого и длительного действия.

Обычно на завтрак требуется 2 единицы инсулина, на обед — 1,5 единицы, а на ужин 1 единица. Но цифры эти строго индивидуальны и определить их можно, только постоянно контролируя сахар в крови. Это так называемая интенсифицированная инсулинотерапия (наиболее приближена к нормальной работе поджелудочной железы и позволяет вести образ жизни, мало отличающийся от такового у людей без сахарного диабета). Существует и так называемая традиционная инсулинотерапия, когда пациент делает себе две (реже одну) инъекции. Инъекции инсулина короткого и длительного действия делаются дважды в день: перед завтраком и перед ужином. Такой вид инсулинотерапии имеет существенный недостаток: обед должен быть съеден в строго определенное время (во время пика действия продленного инсулина, который вводится утром) и должен содержать определенное количество хлебных единиц.

По правилам хранения инсулин должен находиться в холодильнике на нижней полке. Используемый флакон можно сохранять при комнатной температуре. Ни в коем случае нельзя допускать замерзания инсулина. Перед инъекцией флакон инсулина необходимо согреть, опустив на несколько секунд в горячую воду.

Чтобы правильно набрать дозу, необходимо: набрать в шприц воздух на столько делений, сколько нужно ввести инсулина длительного действия, и ввести воздух во флакон с этим инсулином. Не вынимая шприц, набрать необходимое количество инсулина продленного действия. Так же следует поступить с флаконом, содержащим инсулин короткого действия, выпустить из шприца пузырьки воздуха. Ввести инсулин под кожу. Инъекции можно делать в живот, бедро, ягодицы, под лопатку или в руку.

Инсулин — самое испытанное лекарство, применяемое при сахарном диабете всеми больными I типа и по определенным показаниям — при сахарном диабете II типа. Больные сахарным диабетом I типа нуждаются в постоянной заместительной инсулинотерапии, гормон следует вводить ежедневно, потому что только в этом случае организм сможет усваивать глюкозу.

Инсулин является белковым соединением, поэтому, попадая в желудочно-кишечный тракт, он под действием желудочного сока переваривается и теряет лечебные свойства. Поэтому его вводят с помощью инъекций для непосредственного поступления в кровь.

Для введения инсулина применяются специальные шприцы и щприц-ручки, позволяющие производить инъекции практически безболезненно, в любой обстановке, без предварительной стерилизации.

Чтобы уровень сахара крови в течение дня был близок к норме, необходимо с помощью инъекций максимально имитировать секрецию инсулина у здорового человека, то есть обеспечить его постоянный уровень и увеличение количества после нарастания концентрации сахара крови вследствие еды. Пики лечебного действия инсулина должны по возможности совпадать с пиками подъема сахара крови (который наступает после принятия пищи), что проверяется по уровню содержания сахара в крови через 1 и 2 часа после завтрака или обеда.

В настоящее время существует много видов инсулина, различающихся по времени действия, поэтому врач имеет возможность подобрать индивидуальную схему лечения для каждого больного. Определение оптимальных видов инсулинов и схем их применения определяются эндокринологом с учетом степени тяжести сахарного диабета, осложнений, сопутствующих заболеваний.

Инсулинотерапия обычно назначается больным с сахарным диабетом I типа, но при кетоацидозе, диабетической предкоме и коме, при инфекционных осложнениях и хирургических вмешательствах инсулин является одним из важнейших лечебных средств.

Инсулин в сыворотке крови

Референтные величины концентрации инсулина в сыворотке крови у взрослых составляют 3-17 мкЕД/мл (21,5-122 пмоль/л).

Инсулин — полипептид, мономерная форма которого состоит из двух цепей: А (из 21 аминокислоты) и В (из 30 аминокислот). Инсулин образуется как продукт протеолитического расщепления предшественника инсулина, называемого проинсулином. Собственно инсулин образуется уже после выхода из клетки. Отщепление С-цепи (С-пептида) от проинсулина происходит на уровне цитоплазматической мембраны, в которой заключены соответствующие протеазы.

Инсулин необходим клеткам для транспорта глюкозы, калия и аминокислот в цитоплазму. Он оказывает ингибирующее действие на гликогенолиз и глюконеогенез. В жировой ткани инсулин усиливает транспорт глюкозы и интенсифицирует гликолиз, повышает скорость синтеза жирных кислот и их эстерификацию и ингибирует липолиз. При длительном действии инсулин повышает синтез ферментов и синтез ДНК, активирует рост.

В крови инсулин снижает концентрацию глюкозы и жирных кислот, а также (хотя и незначительно) аминокислот. Инсулин сравнительно быстро разрушается в печени под действием фермента глутатионинсулин транс-гидрогеназы. Период полураспада инсулина, введённого внутривенно, составляет 5-10 мин.

Причина возникновения сахарного диабета — недостаточность (абсолютная или относительная) инсулина. Определение концентрации инсулина в крови необходимо для дифференциации различных форм сахарного диабета, выбора лечебного препарата, подбора оптимальной терапии, установления степени недостаточности р-клеток. У здоровых людей при проведении ПТТГ концентрация инсулина в крови достигает максимума через 1 ч после приёма глюкозы и снижается через 2 ч.

Нарушение толерантности к глюкозе характеризуется замедлением подъёма концентрации инсулина в крови по отношению к нарастанию гликемии в процессе проведения ПТТГ. Максимальный подъём уровня инсулина у этих больных наблюдается через 1,5-2 ч после приёма глюкозы. Содержание в крови проинсулина, С-пептида, глюкагона в нормальных пределах.

Сахарный диабет типа 1. Базальная концентрация инсулина в крови в пределах нормы или снижена, наблюдают меньший её подъём во все сроки проведения ПТТГ. Содержание проинсулина и С-пептида снижено, уровень глюкагона либо в нормальных пределах, либо несколько повышен.

Сахарный диабет типа 2. При лёгкой форме концентрация инсулина в крови натощак несколько повышена. В ходе проведения ПТТГ она также превышает нормальные величины во все сроки исследования. Содержание в крови проинсулина, С-пептида и глюкагона не изменено. При форме средней тяжести выявляют увеличение концентрации инсулина в крови натощак. В процессе проведения ПТТГ максимальный выброс инсулина наблюдается на 60-й минуте, после чего происходит очень медленное снижение его концентрации в крови, поэтому высокое содержание инсулина наблюдают через 60, 120 и даже 180 мин после нагрузки глюкозой. Содержание проинсулина, С-пептида в крови снижено, глюкагона — увеличено.

Гиперинсулинизм. Инсулинома представляет собой опухоль (аденому), состоящую из р-клеток островков поджелудочной железы. Опухоль может развиться у лиц любого возраста, она обычно единичная, доброкачественного характера, но может быть множественной, сочетающейся с адемо-тозом, а в редких случаях — злокачественной. При органической форме гиперинсулинизма (инсулинома или незидиобластома) отмечается внезапная и неадекватная продукция инсулина, которая обусловливает развитие гипогликемии обычно пароксизмального характера. Гиперпродукция инсулина не зависит от гликемии (обычно выше 144 пмоль/л). Отношение инсулин/глюкоза более 1:4,5. Часто выявляют избыток проинсулина и С-пептида на фоне гипогликемии. Диагноз не вызывает сомнений, если на фоне гипогликемии (концентрация глюкозы в крови менее 1,7 ммоль/л) уровень инсулина в плазме выше 72 пмоль/л. В качестве диагностических проб используются нагрузки толбутамидом или лейцином: у больных с инсулинпродуцирующей опухолью часто отмечается высокий подъём концентрации инсулина в крови и более заметное снижение уровня глюкозы по сравнению со здоровыми. Однако нормальный характер этих проб не исключает диагноза опухоли.

Многие типы злокачественных опухолей (карциномы, особенно гепатоцеллюлярные, саркомы) приводят к развитию гипогликемии. Наиболее часто гипогликемия сопровождает опухоли мезодермального происхождения, напоминающие фибросаркомы и локализованные преимущественно в забрюшинном пространстве.

Функциональный гиперинсулинизм нередко развивается при различных заболеваниях с нарушениями углеводного обмена. Он характеризуется гипогликемией, которая может протекать на фоне неизменённых или даже повышенных концентраций инсулина в крови, и повышенной чувствительностью к введённому инсулину. Пробы с толбутамидом и лейцином отрицательные.

Инсулиноподобный фактор роста I в сыворотке крови

Основной фактор, определяющий концентрацию ИПФР I в сыворотке крови, — возраст. Концентрация ИПФР I в крови возрастает с очень низких показателей (20-60 нг/мл) при рождении и достигает пиковых значений (600-1100 нг/мл) в период половой зрелости. Уже во второй декаде жизни человека уровень ИПФР I начинает быстро снижаться, достигая средних значений (350 нг/мл) в возрасте 20 лет, а затем снижается более медленно с каждой декадой. В 60 лет концентрация ИПФР I в крови составляет не более 50% таковой в возрасте 20 лет. Суточные колебания концентрации ИПФР I в крови не выявлены.

Концентрация ИПФР I в крови зависит от СТГ, а также от T4. Низкий уровень ИПФР I выявляют у пациентов с тяжёлой недостаточностью T4. Проведение заместительной терапии препаратами левотироксина натрия приводит к нормализации концентрации ИПФР I в сыворотке крови.

Ещё один фактор, определяющий концентрацию ИПФР I в крови, — состояние питания. Адекватное белково-энергетическое обеспечение организма — важнейшее условие поддержания нормальной концентрации ИПФР I в крови как у детей, так и у взрослых. У детей с выраженной энергетической и белковой недостаточностью концентрация ИПФР I в крови снижена, но легко поддаётся коррекции при нормализации питания. Другие катаболические нарушения, такие как печёночная недостаточность, воспалительные заболевания кишечника или почечная недостаточность, также ассоциируются с низким содержанием ИПФР I в крови.

В клинической практике исследование ИПФР I имеет важное значение для оценки соматотропной функции гипофиза.

При акромегалии концентрация ИПФР I в крови постоянно увеличена и поэтому считается более достоверным критерием акромегалии, чем содержание СТГ. Средняя концентрация ИПФР I в сыворотке крови у пациентов с акромегалией приблизительно в 7 раз превышает нормальную возрастную величину. Чувствительность и специфичность исследования ИПФР I для диагностики акромегалии у пациентов старше 20 лет превышает 97%. Степень повышения концентрации ИПФР I в сыворотке крови коррелирует с активностью заболевания и ростом мягких тканей. Определение содержания ИПФР I в сыворотке крови используют для мониторинга эффективности лечения, так как оно хорошо коррелирует с остаточной секрецией СТГ.

Критериями излечения акромегалии считают следующие лабораторные показатели:

 концентрация СТГ в крови натощак ниже 5 нг/мл;

концентрация СТГ в крови ниже 2 нг/мл при проведении ПТТГ;

 концентрация ИПФР I в крови в пределах нормальных величин.

Антитела к инсулину в сыворотке крови

Для выявления аутоантител класса IgG к инсулину в сыворотке крови используют ИФА. Длительная инсулинотерапия обычно вызывает увеличение количества циркулирующих АТ к вводимому препарату инсулина у больных сахарным диабетом типа 1. АТ к инсулину в крови больных — причина инсулинорезистентности, степень которой зависит от их концентрации. У большинства больных высокий уровень АТ к гормону оказывает существенное влияние на фармакокинетику вводимого инсулина. Уровень выявляемых в крови АТ к инсулину является важным диагностическим параметром, позволяющим лечащему врачу проводить коррекцию инсу-линотерапии и целенаправленное иммуносупрессивное лечение.

Вместе с тем не всегда существует прямая зависимость между концентрацией АТ и степенью резистентности к инсулину. Чаще всего явления инсулинорезистентности возникают при введении недостаточно очищенных препаратов бычьего инсулина, содержащих проинсулин, глюкагон, соматостатин и другие примеси. Для предотвращения развития инсулинорезистентности используют высокоочищенные инсулины (главным образом свиной), которые не вызывают образования АТ. АТ к инсулину могут обнаруживаться в крови больных, леченных не только инсулином, но и пероральными гипогликемическими препаратами из группы сульфонилмочевины.

Титр АТ к инсулину может быть повышен у 35-40% больных с впервые выявленным сахарным диабетом (то есть не леченных инсулином) и почти у 100% детей в течение 5 лет со времени проявления сахарного диабета типа 1. Это связано с гиперинсулинемией, имеющей место в начальной стадии заболевания, и реакцией иммунной системы. Поэтому определение АТ к инсулину может быть использовано для диагностики начальных стадий сахарного диабета, его дебюта, стёртых и атипичных форм (чувствительность — 40-95%, специфичность — 99%). Спустя 15 лет от начала заболевания АТ к инсулину выявляют только у 20% пациентов.

Проинсулин в сыворотке крови

Референтные величины концентрации проинсулина в сыворотке крови у взрослых — 2-2,6 пмоль/л.

Одной из причин развития сахарного диабета может быть нарушение секреции инсулина из р-клеток в кровь. Для диагностики нарушений секреции инсулина в кровь используют определение проинсулина и С-пептида.

Инсулин играет в организме очень важную роль, заключающуюся не только в регуляции углеводного обмена. Прежде всего, инсулин — это единственный гормон, помогающий сахару, циркулирующему в крови, пройти в мышечные, жировые, печеночные клетки. Если инсулина не хватает, то глюкоза полностью не используется, не сгорает, сахар накапливается в крови и блокирует работу организма. Возникает голод среди изобилия. При повышении уровня сахара в крови (больше 9—10 ммоль/л) он начинает выводиться через почки, и человек начинает худеть даже при обильном питании. Вместе с сахаром из организма уходит и вода — появляются жажда и увеличение мочеотделения. В конце концов организм начинает использовать другие виды горючего, в том числе жиры и белки. Но для их расщепления тоже нужен инсулин, а поскольку его очень мало, жиры сгорают не до конца, с образованием так называемых кетоновых тел, что ведет к отравлению организма и может спровоцировать тяжелейшее осложнение — кому и гибель больного.

 

Похожие статьи

medn.ru

Аминокислотные остатки инсулине - Справочник химика 21

    К пептидным гормонам относятся инсулин, продуцируемый поджелудочной железой, регулирующий метаболизм углеводов, жиров и белков, содержащий 51 аминокислотный остаток секретин, вырабатываемый в желудочно-кишечном тракте, определяющий секреторную функцию желудочно-кишечного тракта, содержащий 21 аминокислотный остаток в передней доле гипофиза вырабатываются адренокор-тикотропин (34 аминокислоты), контролирующий активность коры надпочечников, пролактин (198 аминокислот), влияющий на рост грудных желез и секрецию молока в задней доле гипофиза вырабатываются вазопрессин (9 аминокислот), действующий как диуретик и сосудосуживающее, и окси-тоцин (9 аминокислот), стимулирующий сокращение гладкой мускулатуры. Это только иллюстративный перечень гормонов пептидной структуры — их значительно больше, многие из них еще изучены не полностью, как в плане строения, так и функциональности. Особенно важно и проблематично исследование связи их строения с активностью. Данные по связи структура — активность позволяют иногда получать синтетические полипептиды с активностью, превосходящей природные. Так, варьируя аминокислотный состав нейрогипофизных гормонов (схема 4.4.1) было получено около 200 аналогов, из которых один, [4-ТИг]-оксито-цин оказался высокоактивным. [c.81]     Порядок чередования аминокислотных остатков в полипептидных цепях (называемый первичной структурой) впервые именно таким образом был установлен для белка инсулина. Молекула инсулина имеет молекулярную массу 5733. Она состоит из двух полипептидных цепей, одна из которых содержит 21 аминокислотный остаток, вторая 30. Последовательности аминокислот в короткой и длинной цепях были определены в период 1945—1952 гг. Сенгером и его сотрудниками. Обе цепи в молекуле инсулина соединены дисульфидными связями S—S, образованными между остатками цистина. [c.393]

    Многие пептиды являются гормонами. Так, например, присутствующие в гипофизе гормоны окситоцин и вазопрессин состоят из девяти аминокислотных остатков, т. е. относятся к нанопептидам. Первый влияет на протекание родов у женщин и образование молока, второй контролирует водный обмен в организме. Инсулин, вырабатываемый поджелудочной железой, контролирует метаболизм сахаридов, и его недостаток приводит к диабету. Инсулин состоит из двух цепей, одна из которых содержит 21, а другая — 30 аминокислотных остатков. Цепи соединены серными мостиками —5—5—, которые образуются при окислении групп 5Н двух цистеиновых остатков (при этом получается остаток аминокислоты цистина). Структура инсулина точно известна, и он был синтезирован. Другой пептидный гормон, адренокортикотропный гормон (АКТГ), регулирует синтез стероидных гормонов в коре надпочечников, а соматотропин контролирует рост. Оба этих гормона вырабатываются передней долей гипофиза. К гормонам, образующимся в пищеварительном тракте, относятся, например, секретин и гастрин. Среди пептидов имеются и антибиотики, например бацитрацин (составная часть фрамикоина). [c.191]

    Инсулин — гормон поджелудочной железы, регулирующий углеводный обмен и поддерживающий нормальный уровень сахара в крови. Недостаток этого гормона в организме приводит к одному из тяжелейших заболеваний — сахарному диабету, который как причина смерти стоит на третьем месте после сердечно-сосудистьк заболеваний и рака. Инсулин — небольшой глобулярный белок, содержащий 51 аминокислотный остаток и состоящий из двух полипептидных цепей, связанных между собой двумя дисульфидными мостиками. Синтезируется он в виде одноцепочечного предшественника — препроинсулина, содержащего концевой сигнальный пептид (23 аминокислотных остатка) и 35-звенный соединительный пептид (С-пептид). При удалении сигнального пептида в клетке образуется проинсулин из 86 аминокислотных остатков, в котором А и В-цепи инсулина соединены С-пеп-тидом, обеспечивающим им необходимую ориентацию при замыкании дисульфидных связей. После протеолитического отщепления С-пептида образуется инсулин. [c.132]

    Существенным подтверждением полипептидной теории строения белка является возможность синтеза чисто химическими методами полипептидов и белков с уже известным строением инсулина-51 аминокислотный остаток, лизоцима-129 аминокислотных остатков, рибонуклеазы -124 аминокислотных остатка . Синтезированные белки обладали аналогичными природным белкам физико-химическими свойствами и биологической активностью. [c.51]

    Расшифрованы первичные структуры миоглобина человека (153 аминокислотных остатка), а-цепи (141) и 3-цепи (146) гемоглобина человека, цитохрома С из сердечной мышцы человека (104), лизоцима молока человека (130), химотрипсиногена быка (245) и многих других белков, в том числе ферментов и токсинов. На рис. 1.14 представлена последовательность аминокислотных остатков проинсулина. Видно, что молекула инсулина (выделена темными кружками), состоящая из двух цепей (А-21 и В-30 аминокислотных остатков), образуется из своего предшественника-проинсулина (84 аминокислотных остатка), представленного одной полипептидной цепью, после отщепления от него пептида, состоящего из 33 аминокислотных остатков. Строение молекулы инсулина (51 аминокислотный остаток) схематически можно представить следующим образом  [c.57]

    Инсулин был впервые вьщелен из поджелудочной железы быка в 1921 г. Ф. Бантингом и Ч. Бестом. Он состоит из двух полипептидных цепей, соединенных двумя дисульфидными связями. Полипептидная цепь А содержит 21 аминокислотный остаток, а цепь В — 30 аминокислотных остатков, молеку- [c.164]

    Вирус табачной мозаики (ВТМ). Из всех вирусов наиболее хорошо изучен растительный вирус табачной мозаики. Тем не менее сведения, которыми мы располагаем в настояш,ее время, вероятно, еще далеко не достаточны для полного описания его строения. Физические исследования показали, что ВТМ представляет собой тонкий стержень длиной 3000 А и диаметром 150 А. Вес такой частицы равен 39- 10 . Из этого числа 5% приходится на РНК, константа седиментации которой равна 27S, а молекулярный вес 2,0 10 . Если бы цепь РНК вируса полностью вытянуть, она была бы в 10 раз длиннее вирусной частицы. Остальные 95% вируса приходятся на белок, который состоит из 2130 идентичных субъединиц. В состав каждой субъединицы, имеющей молекулярный вес 17 420, входит 158 аминокислот. Белок вируса табачной мозаики является третьим белком после инсулина и рибонуклеазы, для которого полностью установлена последовательность аминокислот. Каждая белковая субъединица представляет собой единую полипептидную цепь, на N-конце которой находится ацетилированный серии. Это один из редких случаев особой модификации N-конца полипептидной цепи. Различные штаммы этого вируса отличаются по аминокислотному составу белка. У всех исследованных штаммов белковая часть содержит только один остаток цистеина. В некоторых штаммах отсутствуют метионин и гистидин. [c.359]

    Инсулин, получивший свое название от наименования панкреатических островков (лат. insula—островок), был первым белком, первичная структура которого была раскрыта в 1954 г. Ф. Сэнджером (см. главу 1). В чистом виде инсулин был получен в 1922 г. после его обнаружения в экстрактах панкреатических островков Ф. Бантингом и Ч. Бестом. Молекула инсулина, содержащая 51 аминокислотный остаток, состоит из двух полипептидных цепей, соединенных между собой в двух точках дисульфидными мостиками. Строение инсулина и его предшественника проинсулина приведено в главе 1 (см. рис. 1.14). В настоящее время принято обозначать цепью А инсулина 21-членный пептид и цепью В—пептид, содержащий 30 остатков аминокислот. Во многих лабораториях осуществлен, кроме того, химический синтез инсулина. Наиболее близким по своей структуре к инсулину человека является инсулин свиньи, у которого в цепи В вместо треонина в положении 30 содержится аланин. [c.268]

    Молекула инсулина (мономер) состоит из двух полипептидных цепей, соединенных дисульфидными связями, и содержит 51 аминокислотный остаток. Мономер имеет мол. массу 6000, Цепь с Ы-концевым глицином, состоящую из 21 аминокислотного остатка, называют А-це-пью. В-цепь на М-конце имеет фенилаланин и содержит 30 аминокислотных остатков (рис. 63), [c.275]

    В отличие ох углеводов первичная структура белков строго специфична для каждого вида организмов. Так, гормон инсулин, построенный из 51 остатка а-аминокислот в виде двух цепей, соединенных дисульфидными мостиками, имеет неодинаковый состав у различных видов животных. Трехчленные звенья в определенном месте цепи А молекулы инсулина содержат следующие аминокислотные остатки у быка аланин—серир—валин у свиньи треонин—серин—изолейцин у лошади треонин—глицин—изолейцин у овцы аланин—глицин—валин у человека треонин—серин—изолейцин (на схеме 9 они отмечены звездочками). Различия наблюдаются также в С-концевом остатке В-цепи в инсулине человека Это остаток треонина, а в инсулине быка — остаток аланина. [c.512]

    Однако / нс-форма не имеет, по-видимому, широкого распространения в белках вследствие стерических (пространственных) препятствий. Число и последовательность аминокислот, соединенных друг с другом пептидными связями, характеризуют первичную структуру белка. Молекулярные веса белковых молекул колеблются от 6000 для инсулина до более миллиона. Инсулин представляет собой белок с крайне низким молекулярным весом однако его молекула содержит 51 аминокислотный остаток. Белок с молекулярным весом 100 ООО содержит приблизительно 900 аминокислотных остатков. Выяснение первичной структуры белка представляет, таким образом, очень трудную задачу. Но это не испугало Сенгера, который в конце второй мировой войны начал серию исследований, успешно завершившихся в 1954 г. полной расшифровкой первичной структуры инсулина. Успех Сенгера и его сотрудников был обусловлен тем, что сам Сенгер разработал метод анализа концевых амин-ных групп, а Мартин и Синг — методы выделения веществ с помощью распределительной хроматографии на бумаге. [c.27]

    Порядок чередования аминокислотных остатков в полипептидных цепях (называемый первичной структурой) впервые был установлен для белка инсулина. Молекула инсулина имеет молекулярный вес около 12 ООО. Она состоит из двух полипептидных цепей, причем одна цепь содержит 21 аминокислотный остаток, а другая 30. Последовательность аминокислотных остатков в короткой и длинной цепях была установлена в период 1945—1952 гг. английским биохимиком Ф. Сейджером (1918) и его сотрудниками. Две цепи в молекуле инсулина соединены между собой связями сера — сера, расположенными между половинами цистиновых остатков (табл. 24.1). В настоящее время последовательность аминокислотных остатков установлена методом Сейджера для альфа- и бета-цепей нормального гемоглобина взрослого человека и для многих других белков. Последовательность чередования аминокислот в бета-цепи гемоглобина А человека (146 аминокислотных остатков) можно записать следующим образом (концевая аминогруппа, или N-тepминaльнaя группа) Вал-Гис-Лей-Тре--Про-Глу- Гл у-Лиз-Сер-Ал а-В а л-Тре-Ал а -Л ей-Три -Гли- Л из -Вал - Асн-В ал--Асп-Глу-Вал-Гли-Гли-Глу-Ала-Лей-Гли-Арг-Лей-Лей-Вал-Вал-Тир-Про--Три-Тре-Глн- Арг-Фен-Фен -Глу-Сер-Фен -Гли-Асп -Лей-Сер-Тре-Про- Асп--Ал а-В ал -Мет-Гли -Асн-Про-Лиз-В ал - Лиз-Ал а-Гис-Гли-Лиз-Лиз-В ал-Лей--Гли-Ал а -Фен-Сер-Асп -Гли -Л ей-Ал а -Гис-Л ей-Асп -Асп -Л ей-Лиз-Гли-Тре--Фен-Ала-Тре-Лей-Сер-Глу-Лей-Гис-Цис-Асп-Лиз-Лей-Гис-Вал-Асп-Про--Глу-Асн-Фен -Арг-Л е й-Л ей-Гли-Асн -В ал -Лей-В ал-Цис-Вал-Л ей-Ал а-Гис--Гис-Фен-Гли-Лиз-Глу-Фен-Тре-Про-Про-Вал-Глн-Ала-Ала-Тир-Глн-Лиз--Вал-Вал-Ала-Гли-Вал-Ала-Асн-Ала-Лей-Ала-Гис-Лиз-Тир-Гис (концевая карбоксильная группа, или С-терминальная группа). Такая последовательность для альфа-цепи (141 остаток) в известной мере аналогична чередованию аминокислот в бета-цепи примерно 75 аминокислотных остатков занимают по существу те же места в цепях. Альфа-цепь гемоглобина гориллы отличается от аналогичной цепи гемоглобина человека тем, что в двух случаях аминокислотные остатки оказываются взаимозамещенными, а бета-цепи этих белков отличаются лишь одним замещением. Различие между гемоглобином лошади и гемоглобином человека заключается приблизительно в 18 замещениях в каждой цепи. Эти наблюдения и множество других такого рода данных для различных белков служат очень веским независимым доказательством теории эволюционного развития. [c.681]

    Гамов попытался проверить правильность своего кода, сопоставив возможность сочетания ромбов с известной первичной структурой инсулина и адренокортикотропина. При этом возникли неразрешимые противоречия. Дальнейшие исследования показали, что никакие перекрывающиеся коды нельзя согласовать с опытом. Наличие перекрытий в кодонах может выражаться в корреляциях между соседними аминокислотными остатками. Иными словами, некоторые парные сочетания остатков должны быть запрещены. Анализ первичных структур белкои показал, что таких корреляций нет —любой остаток может следовать за любым, хотя разные остатки встречаются с различными частотами [4, 5]. Можно, однако, представить себе перекрывающиеся нуклеотидные коды, допускающие любую последовательность аминокислот [6]. [c.555]

    Многие из гормонов человеческого организма являются полипептидами. Наиболее известный из них, вероятно, инсулин, молекула которого содержит 51 аминокислотный остаток. [c.79]

    Один из первых белков, первичная структура которого была установлена в 1954 г., — гормон инсулин (регулирует содержание сахара в крови), его молекула состоит из двух полипептидных цепей, которые связаны друг с другом (в одной цепи 21 аминокислотный остаток, в другой — 30), Мг (инсулина) = 5700. [c.704]

    Молекула инсулина состоит из двух полипептидных цепей Л-цепь — 21 аминокислотный остаток, 5-цепь — 30 аминокислотных остатков. Молекулу стабилизируют две межцепочечные дисульфидные связи А1-Ю, А2 -В 9) и одна связь в пределах цепи А [c.388]

    Особый интерес представляют данные по облучению инсулина, так как точно известна последовательность аминокислот в этом белке (см. рис. VI- ). В состав молекулы инсулина входят 17 разных аминокислот, причем всего в молекуле имеется 51 аминокислотный остаток. Из этого 51 аминокислотного звена лишь три содержат серу (цистиновые звенья молекулы белка). Два из этих трех цистиновых остатков образуют дисульфидные мостики между двумя полипептидными цепями молекулы, а третий — внутрицепной дисульфидный мостик в одной из двух цепей. Между цистиновыми звеньями в одной из полипептидных ценей инсулина расположено 11 других аминокислотных остатков, причем восемь из них — остатки восьми разных аминокислот. В другой цепи между двумя фрагментами цистина находится восемь разных аминокислотных звеньев. Несмотря на это, спектр ЭПР облученного рентгеновскими лучами инсулина, как обнаружил Горди, почти идентичен спектру ЭПР облученного цистина. [c.432]

    Инсулин выделен из препаратов поджелудочной железы в чистом кристаллическом виде. Это простой белок, молекулярный вес которого 12 ОО О. Однако имеется доказательство того, что минимальный вес инсулина, соответствующий наименьшей элементарной частице, которая объединяется ковалентными связями, — 6000 (Нейрат, Сангер). Молекула инсулина построена из 16 аминокислот (нет триптофана, метионина и оксипролина) и содержит 51 аминокислотный остаток, если молекулярный вес принять равным 6000. Эти аминокислоты образуют две полипептидные цепи, так как удалось обнаружить два N-концевых аминокислотных остатка (фенилаланин и глицин) и два С-концевых аминокислотных остатка (аланин и аспарагин), причем полипептидные цепи соединяются друг с другом поперечными мостиками, образованными дисульфидными группами. Фенилала-ниновая цепь содержит 30 аминокислотных остатков, а глициновая — 21. В настоящее время последовательность соединения аминокислот в молекуле инсулина полностью расшифрована. Схематически структуру инсулина [c.187]

    Мономерный инсулин состоит из 51 аминокислотного остатка и имеет две цепи короткую (А-цепь), содержащую 21 аминокислотный остаток, и длинную (В-цепь), состоящую из 30 аминокислотных остатков. А- и В-це- [c.298]

    Ответ. Первая проблема состоит в том, что, прежде чем синтезировать белки, надо расшифровать их первичную структуру и определить пространственную конфигурацию. Эта задача решена только для самых простых белков. Первый белок, у которого была расшифрована первичная структура, — гормон инсулин. Это простой белок, состоящий из двух полипептидных цепей (одна цепь содержит 21 аминокислотный остаток, другая — 30 остатков), соединенных двумя дисульфидными мостиками. На установление его структуры потребовалось 10 лет. [c.125]

    Возможности спектроскопии флуоресценции как средства исследования макромолекул в растворе впервые были продемонстрированы при изучении растворов белков [548, 549]. Три из присутствующих в белках аминокислоты флуоресцируют максимум спектра испускания для фенилаланина наблюдается при 282 мц, для тирозина — при 303 м л и для триптофана — при 348 м х, [550]. Спектры испускания простых пептидов весьма напоминают спектры свободных аминокислот, однако в белках они резко изменяются за счет безызлучательного перехода энергии возбуждения между аминокислотными остатками. Известно, что такие процессы чрезвычайно эффективны на расстояниях до 40 А [551]. Вследствие этого перехода энергии флуоресценция фенилаланина может наблюдаться лишь в отсутствие тирозина и триптофана (т. е. в желатине), а флуоресценция тирозина обнаруживается только в отсутствие триптофана (т. е. в инсулине), в то время как большинство белков имеет спектры испускания, приписываемые остаткам триптофана. Эти спектры испускания значительно изменяются для нативных белков, однако они становятся идентичными при денатурации белков в 8 Ai растворе мочевины [549] этот факт указывает на то, что характер спектра и квантовый выход флуоресценции подвержены изменениям, обусловленным как природой среды, окружающей остаток триптофана, так и конформационными превращениями полипептидного хребта, к которому присоединена флуоресцирующая боковая цепь. [c.188]

    L-изолейцин заменен на L-фенилаланин, а ь-лейцин — либо на L-лизин (в вазопрессине свиньи), либо на ь-аргинин (в вазо-прессине быка). Первичная структура инсулина быка, который содержит 51 аминокислотный остаток, показана ниже. Конец пептидной цепи, содержащий концевую аминогруппу, изображен символом Н-(например, H-Gly- в схеме означает h3N h3 O—), а конец, содержащий карбоновую кислоту, обозначен ОН (-Ala-ОН означает —NH H(СНз)СО2Н). [c.299]

    В настоящее время выяснение первичной структуры белков является вопросом времени и технического оснащения лабораторий. Полностью выяснена первичная структура многих природных белков и прежде всего инсулина, содержащего 51 аминокислотный остаток [Сэнджер Ф., 1954]. Более крупным белком с выясненной первичной структурой оказался иммуноглобулин, в четырех полипептидных цепях которого насчитывается 1300 аминокислотных остатков. За эту работу Дж. Эдельман и Р. Портер были удостоены Нобелевской премии (1972). [c.56]

    Определение числа и природы С- и М-концевых аминокислотных остатков позволило добиться существенных успехов в выяснении структуры некоторых белков. Инсулин оказался первым белком, для которого полностью установлен порядок расположения всех аминокислот [102—107]. Сангер и его сотрудники путем окисления инсулина надмуравьиной кислотой получили два основных продукта, которые оказались пептидами, содержащими цистеиновую кислоту и состоящими из 21 и соответственно 30 аминокислотных остатков. Более короткая цепь (по обозначению Сангера — пептид А ) имеет Ы-концевой остаток глицина и С-концевой остаток аспарагина. В более длинной цепи (пептид В ) Ы-концевой аминокислотой оказался фенилаланин, а на С-конце цепи находится аланин. С помощью остроумных приемов, заключающихся в широком использовании метода получения динитрофенильных производных при помощи [c.27]

    Основные научные работы посвящены химии белка. Изучал (с 1945) структуру инсулина. Разработал динитрофторбензольный метод идентификации концевых аминогрупп в пептидах, с помощью которого установил природу и последовательность чередования аминогрупп в инсулине, расшифровал его строение (1949—1954). Установил, что инсулин имеет общую формулу 254h437N65O75S6, три сульфидных мостика и состоит из двух цепей цепи А, содержащей 21 аминокислотный остаток, и цепи В, содержащей 30 аминокислотных остатков. Эти работы послужили основой для синтетического получения инсулина и других гормо- [c.457]

    Ф. Сенгер расшифровал строение инсулпна. Установил, что инсулин имеет общую формулу С254Нзз7Мб50753б, три сульфидных мостика и состоит из двух цепей цепи А, содержащей 21 аминокислотный остаток, и цепи В, содержащей 30 аминокислотиых остатков. [c.686]

    Порядок, в котором расположены аминокислотные остатки в нолинеи-тидной цепи, сравнительно недавно был установлен для инсулина. Молекулярный вес инсулина около 12 ООО. Молекула инсулина состоит из четырех полинептидных цепей, две из которых содержат 21 аминокислотный остаток, а две другие — 30. Последовательность аминокислот в коротких и длинных цепях была установлена в 1945—1952 гг. английским биохимиком Санджером и его сотрудниками. Четыре цепи в молекуле инсулина соединены между собой связями между атомами серы, соединяющими обе половины цистиновых остатков (см. табл. 34). [c.487]

    Сэнгером при установлении аминокислотной последовательности бьгаьего инсулина эта последовательность приведена на рис. 6-11. Бычий инсулин имеет молекулярную массу около 5700. Его молекула состоит из двух полипептидных цепей А-цепи, содержащей 21 аминокислотный остаток, и В-цепи, содержащей 30 аминокислотных остатков. Эти две цепи соединены двумя дисульфидными (—8—8—поперечными связями, причем в одной из цепей имеется еще одна внутренняя дисульфидная связь. При определении последовательности вначале были разорваны поперечные дисульфидные связи, что позволило разделить цепи. Для этой цели Сэнгер использовал в качестве окислителя надмуравьиную кислоту, которая расщепляет каждый остаток цистина на два остатка цистеи-новой кислоты (рис. 6-12), по одному в каждой цепи. После разделения цепей в них были определены аминокислотные последовательности. При этом не удалось обнаружить никаких закономерностей в расположении какой-либо аминокислоты, никаких периодических повторений того или иного аминокислотного остатка. Более того, последовательности двух цепей оказались совершенно разными. [c.153]

    Сэнджер и сотр. [1907, 1908] установили строение бычьего инсулина в 1945—1955 гг. Молекулярный вес инсулина (ср. рис. 95) равен 5733 его молекула состоит из двух пептидных цепей — цепи А (21 аминокислотный остаток) и цепи В (30 аминокислотных остатков). Обе цепи связаны между собой двумя дисульфидными мостиками. В цепи А имеется еще один дисуль- [c.470]

    Химическая природа. Инсулин является белком (молекулярный вес 6000) Это первый белковый гормон, химическая природа которого расшифрована. Молекула инсулина построена из 2 полипептидных цепей — мономеров, из которых цепь А содержит 21 аминонислотный остаток, а цепь Б—30 аминокислотных остатков. Полипептидные цепи связаны между собой дисульфидными мостиками за счет сульфгид-рильных групп молекул цистеина. Расположение аминокислот в полипептидных цепях А и Б полностью расшифровано Сэнджером, а в 1963 г. другими авторами осуществлен синтез инсулина. [c.95]

    Осп. работы посвящены химии белка. Изучал (с 1945) структуру инсулина. Разработал динитро-фторбепзольный метод идентификации концевых аминогрупп в пептидах, с помощью которого установил природу и последовательность чередования аминогрупп в инсулине, расшифровал его строение (1949—1954). Установил, что инсулин имеет общую формулу Сш Н ) )7 N6507580, три сульфидных мостика и состоит из двух цепей цепи А, содержащей 21 аминокислотных остаток, и цепи В, содержащей 30 аминокислотных остатков, Эти работы послужили основой для синт, получения инсулина и др. гормонов. Предложил (1965) метить РНК и ДНК, предназначенные для структурных исследований, радиоактивным изотопом фосфора Р, что позволило осуществлять работы с чрезвычайно малым колич-вом материала— 10 г. Установил структуру 58 РНК (120 оснований 1967) и ДНК фага ФХ174 (5375 основа- [c.403]

    Инсулин — полипептид, состоящий из 2 цепей, включающих 51 аминокислотный остаток. А-цепь содержит 21 аминокислотный остаток, В-цепь — 30. Цепи соединены двумя би-сульфидными мостиками, третий бисульфидный мостик содержится в цепи А. Инсулин относят к анаболическим гормонам, влияющим на ассимиляцию углеводов, белков, жиров. Механизм действия инсулина на углеводный обмен включает облегчение транспорта глюкозы через клеточные мембраны, активацию гексокиназы, способствующей превращению глюкозы в глю-козо-6-фосфат, активацию гликогенсинтетазы (стимуляция гликогеногенеза), снятие ингибирующего действия на секреторные клетки гормонов гипофиза. Инсулин также стимулирует синтез белков, снижает содержание свободных жирных кислот в крови и депонирование ТГ в жировых клетках. [c.396]

    Инсулин состоит из 51 аминокислотного остатка, которые составляют две цепи цепь А (21 остаток), цепь В (30 остатков). Обе цепи связаны двумя дисульфидными мостиками. Цепь А содержит третий дисульфидный мостик, замыкающий петлю, состоящую -из шести аминокислотных остатков. Последовательность аминокислот в инсулине определена [78] и проведено его рентгеноструктурное исследование [79]. Цепь А имеет сильно свернутую структуру с короткими квазиспиральными участками. Участки а-опиралей имеются в цепи В между дисульфидными мостиками. Низкая молекулярная масса (5780), казалось бы, делает инсулин привлекательным объектом для исследования с помощью ЯМР, тем не менее еще нет публикаций об изучении этим методом нативного белка. Отчасти, видимо, это объясняется тем, что в нем не выделен активный центр . Гормональная функция инсулина — способность понижать содержание сахара в крови —хорошо известна, но непонятна с химической точки зрения. Инсулин обладает ярко выраженной способностью образовывать полимеры. Димер и гексамер хорошо охарактеризованы [79]. В димере наблюдается интересное окружение (по типу ящика ) остатков Тир-26 (В) и Фен-24 (В), а также остатков во второй входящей в димер молекуле, связанных с двумя первыми осью симметрии второго порядка. Это явление представляет несомненный интерес для изучения на частоте 220 МГц. [c.384]

    Аминокислотные остатки, примыкающие к Ы-концевой аминокислоте, можно определить, используя динитрофторбензольный метод (ДНФ-метод). При полном гидролизе ДНФ-полипентида образуется ДНФ-производное М-концевой аминокислоты, при частичном же гидролизе получается смесь ДНФ-пептидов, которые можно разделить и гидролизовать, а затем идентифицировать образовавшиеся аминокислоты. Например, Сенгеру удалось окислить инсулин надмуравьиной кислотой и выделить две фракции, в одной из которых (фракция В) содержался Ы-концевой остаток фенилаланина. В результате частичного гидролиза ДНФ-фенилаланиловой цепи был получен ряд ДНФ-пептидов из этих пептидов четыре были [c.29]

    Над выяснением структурных формул обычных белков работают в настоящее время во многих лабораториях. Удалось, например, полностью установить структуру белка инсулина. Этот белок имеет молекулярный вес 5733, и его макромолекулы состоят из двух коротких цепей, соединенных друг с другом дисульфид-ными мостиками, как это показано на рис. 1. Одна из полипептидных цепей содержит 21, а другая 30 аминокислотных остатков (термин остаток относится к структурному звену —МН—СНН—СО—). Порядок чередования остатков был установлен Сэнджером  [c.17]

    Успехи в разработке методов изучения белков, в особенности хроматографического метода, позволили Сэнгеру установить строение инсулина. Этому способствовала также обнаруженная им реакция, о которой говорилось выше динитрофе-нильная группа (ДНФ) способна присоединяться к свободным аминогруппам с образованием желтого соединения. ДНФ-группа остается присоединенной к аминокислотному остатку даже после гидролиза, который проводят с целью расш епления пептидов это дает возможность идентифицировать концевой остаток аминокислоты. Применив ДНФ-ме-тод, Сэнгер первым показал, что молекула инсулина состоит из двух цепочек, которые удерживаются одна около другой дисульфидными (3 — 8) связями остатков цистина. Эти связи можно разрушить мягким окислением. Таким способом были получены обе ненарушенные цепочки было доказано, что в одной из них содержится 21 аминокислота, а в другой — 30. Каждая цепочка была подвергнута кислотному гидролизу с образованием небольших фрагментов, аминокислоты которых были определены хроматографичрски. Концевые аминокислоты каждого фрагмента были идентифицированы ДНФ-методом. Постепенно расщепляя цепочки на множество мелких пептидов и определяя содержащиеся в них аминокислоты и последовательность их расположения, Сэнгеру ну- [c.319]

chem21.info