Справочник химика 21. Инсулин третичная структура


Презентация на тему: Инсулин. Третичная структура

Трехмерные функционально активные конформации белков носят название третичной структуры.

Третичную структуру белков исследуют главным образом методом кристаллографии. Этот трудоемкий метод основан на дифракции рентгеновских лучей на хорошо сформированных белковых кристаллах

. Ha основании дифракционных картин рассчитывают распределение электронной плотности в кристалле, а по электронной плотности восстанавливают пространственную структуру молекул белка с атомным разрешением.

В настоящее время определены трехмерные структуры сотен белков. Однако многие белки пока нельзя изучить этим методом, поскольку их не удается получить и виде хорошо сформированных кристаллов достаточно крупных размеров.

Кафедра биохимии, 2006

31

(C)

 

Инсулин: анализ третичной структуры

Анализ третичной структуры инсулина показал, что в Α-цепиимеются два коротких участка, а вВ-цепи— один длинный участок, построенные

ввиде α-спирали.

При этом N-конецА-цепииС-конецВ-цепирасполагаются в непосредственной близости друг от друга.

Единственная структура типа складчатого листа образуется в димере инсулина.

Третичная структура проинсулина еще не установлена.

Кафедра биохимии, 2006

32

(C)

 

Инсулин. Четвертичная структура

Белковые молекулы часто образуют симметрично построенные комплексы, стабилизированные за счет нековалентными взаимодействий.

Такие комплексы называются олигомерами, а составные единицы комплексов (от 2 до 12) - субъединицами или мономерами.

Инсулин также образует четвертичные структуры.

В крови инсулин присутствует частично в виде димера. Димер имеет ось симметрии второго порядка.

Кроме того, в поджелудочной железе в качестве запасной формы содержится гексамер инсулина (из 6 мономеров), стабилизированный ионами Zn2+.

В образовании двух комплексов с катионом Zn2+ принимают участие остатки гистидина в положенииB-10всех шести субъединиц.

На схеме 2 показано, что каждый октаэдрический комплекс включает один катион Zn2+, три остатка гистидина и три молекулы воды.

Кафедра биохимии, 2006

33

(C)

 

Свертывание белков

При сравнении наиболее крупных глобулярных белков становится очевидным, что существует определенная схема свертывания полипептидной цепи, которая воспроизводится с незначительными вариациями.

Кафедра биохимии, 2006

34

(C)

 

Свертывание белков: примеры

Рассмотрим ряд примеров (α-спираливыделены красным цветом, плоскости складчатого листа — зеленым), глобулярные белки, построенные изα-спиралей,как например, миоглобин, встречаются редко.

Обычно наблюдаются сочетания складчатых листов и спирализованных участков, как, например, во флаводоксине, небольшом флавопротеине (FMN выделен желтым цветом), где 5 расположенных веером складчатых листов из пяти параллельных тяжей формируют ядро молекулы; 4 α- спиральных участка окружают ядро снаружи.

Иммуноглобулин построен из нескольких похожих доменов (независимых, компактно свернутых фрагментов полипептидной цепи), в которых два антипараллельных складчатых листа из трех или четырех тяжей образуют бочкообразную структуру.

Приведенный на схеме СН2-доменнесет олисахарид (желтый).

Кафедра биохимии, 2006

35

(C)

 

Методы выделения и анализа белков

Препараты высокоочищенных белков находят разнообразное применение в научных исследованиях, медицине и биотехнологии.

Так как многие белки, и в особенности глобулярные, высоколабильны, выделение проводят с помощью предельно мягких методов и при пониженной температуре (0-5°С).

К таким методам относится ионообменная хроматография.

Существуют и другие методы выделения белков.

Кафедра биохимии, 2006

36

(C)

 

Диализ

Для отделения низкомолекулярных примесей или замены состава среды используют диализ.

Метод основан на том, что молекулы белка из-засвоих размеров не могут проходить через

полупроницаемые мембраны, в то время как низкомолекулярные вещества равномерно распределяются между объемом, ограниченным мембраной, и окружающим раствором.

После многократной замены внешнего раствора состав среды в диализном мешочке (концентрация солей, величина pH и др.) будет тот же, что и в окружающем растворе.

Кафедра биохимии, 2006

38

(C)

Гель-фильтрация

Гель-проникающаяхроматография (гельфильтрация) позволяет разделять белкипо величине и форме молекул.

Разделение проводят в хроматографических колонках, заполненных сферическими частицами набухшего полимерного геля (10-500мкм).

Частицы геля проницаемы благодаря внутренним каналам, которые характеризуются определенным средним диаметром.

Смесь белков вносят в колонку с гелем и элюируют буферным раствором.

Белковые молекулы, не способные проникать в гранулы геля (помечены красным цветом), будут перемещаться с высокой скоростью.

Средние (зеленого цвета) и небольшие белки (синего цвета) будут в той или иной степени удерживаться гранулами геля. На выходе колонки элюат собирают в виде отдельных фракций (2).

Объем выхода того или иного белка зависит в основном от его молекулярной массы (3).

Кафедра биохимии, 2006

39

(C)

 

Электрофорез в полиакриламидном геле в присутствии додецилсульфата натрия

В настоящее время электрофорез в полиакриламидном геле (ПААГ) в присутствии додецилсульфата натрия (ДСН) [ДСН-ПААГ-электрофорез(SDS-PAGE)]является общепринятым методом определения гомогенности белковых препаратов.

Метод основан на свойстве заряженных частиц (молекул) перемещаться под действием электрического поля.

Обычно скорость миграции зависит от трех параметров анализируемых белков: величины молекул, формы молекул и суммарного заряда.

Поэтому предварительно белки денатурируют с тем, чтобы скорость миграции зависела только от молекулярной массы.

Для этого анализируемую смесь обрабатывают додецилсульфатом натрия [ДСН (SDS)] (C12h35OSO3Na), который представляет собой детергент с сильно выраженными амфифильными свойствами.

Кафедра биохимии, 2006

40

(C)

 

studfiles.net

Инсулин. Строение, образование из проинсулина, метаболизм, регуляция секреции. Влияние на обмен веществ. — Биохимия. Ответы на билеты

Строение: Представляет собой полипептид из 51 аминокислоты, массой 5,7 кД, состоящий из двух цепей А и В, связанных между собой дисульфидными мостиками.

Синтез: Синтезируется в клетках поджелудочной железы в виде проинсулина, в этом виде он упаковывается в секреторные гранулы и уже здесь образуется инсулин и С-пептид.

Регуляция синтеза и секреции: Активируют синтез и секрецию:

-глюкоза крови – главный регулятор, пороговая концентрация для секреции инсулина – 5,5 ммоль/л,

-жирные кислоты и аминокислоты,

-влияния n.vagus – находится под контролем гипоталамуса, активность которого определяется концентрацией глюкозы крови,

-гормоны ЖКТ: холецистокинин, секретин, гастрин, энтероглюкагон, желудочный ингибирующий полипептид,

-хроническое воздействие гормона роста, глюкокортикоидов, эстрогенов, прогестинов.

Уменьшают: влияние симпато-адреналовой системы.

Механизм действия: После связывания инсулина с рецептором активируется ферментативный домен рецептора. Так как он обладает тирозинкиназной активностью, то фосфорилирует внутриклеточные белки протеинфосфатазы. Конечным эффектом является дефосфорилирование "метаболических" ферментов – ТАГ-липазы, гликогенсинтазы, гликогенфосфорилазы, киназы гликогенфосфорилазы, ацетил-SКоА-карбоксилазы и других.

Мишени и эффекты: Основным эффектом является снижение глюкозы в крови благодаря усилению транспорта глюкозы внутрь миоцитов и адипоцитов и через активацию внутриклеточных реакций утилизации глюкозы.

Печень -активация ферментов гликолиза (гексокиназы, фосфофруктокиназы, пируваткиназы) и гликогеногенеза (гликогенсинтаза),

подавление глюконеогенеза,

усиление синтеза жирных кислот (активация ацетил-SКоА-карбоксилазы) и ЛПОНП.

Мышцы -стимуляция транспорта глюкозы в клетки,

активация синтеза гликогена,

усиление транспорта нейтральных аминокислот в мышцы,

стимулирование трансляции, т.е. рибосомальный синтез белков.

Жировая ткань

стимулирование транспорта глюкозы в клетки,

активация синтеза липопротеинлипазы,

усиление синтеза жирных кислот через активацию ацетил-SКоА-карбоксилазы

усиление синтеза триацилглицеролов через инактивацию ТАГ-липазы.

Патология: Гипофункция - Инсулинзависимый и инсулиннезависимый сахарный диабет.

Согласно современным представлениям, биосинтез инсулина осуществляется в β-клетках панкреатических островков из своего предшественника проинсулина. Проинсулин представлен одной полипептидной цепью, содержащей 84 аминокислотных остатка; он лишен биологической, т.е. гормональной, активности. Местом синтеза проинсули-на считается фракция микросом β-клеток панкреатических островков; превращение неактивного проинсулина в активный инсулин (наиболее существенная часть синтеза) происходит при перемещении проинсулина от рибосом к секреторным гранулам путем частичного протеолиза (отщепление с С-конца полипептидной цепи пептида, содержащего 33 аминокислотных остатка и получившего наименование соединяющего пептида, или С-пепти-да). Длина и первичная структура С-пептида подвержена большим изменениям у разных видов животных, чем последовательность цепей А и В инсулина. Установлено, что исходным предшественником инсулина является препроинсулин, содержащий, помимо проинсулина, его так называемую лидерную, или сигнальную, последовательность на N-конце, состоящую из 23 остатков аминокислот; при образовании молекулы проинсулина этот сигнальный пептид отщепляется специальной пептидазой. Далее молекула проинсулина также подвергается частичному протеолизу, и под действием трипсиноподобной протеиназы отщепляются по две основные аминокислоты с N- и С-конца пептида С – соответственно дипептиды Aрг–Aрг и Лиз– –Aрг. Синтезированный из проинсулина инсулин может существовать в нескольких формах, различающихся по биологическим, иммунологическим и физико-химическим свойствам. Различают две формы инсулина: 1) свободную, вступающую во взаимодействие с антителами, полученными к кристаллическому инсулину, и стимулирующую усвоение глюкозы мышечной и жировой тканями; 2) связанную, не реагирующую с антителами и активную только в отношении жировой ткани. В настоящее время доказано существование связанной формы инсулина и установлена локализация ее в белковых фракциях сыворотки крови, в частности в области трансферринов и α-глобулинов. Молекулярная масса связанного инсулина от 60000 до 100000. Различают, кроме того, так называемую форму А инсулина, отличающуюся от двух предыдущих рядом физико-химических и биологических свойств, занимающую промежуточное положение и появляющуюся в ответ на быструю, срочную потребность организма в инсулине.

ifreestore.net

Инсулин структура - Справочник химика 21

Рис. 25-4. Структура бычьего инсулина. Рис. 25-4. Структура бычьего инсулина.
    Порядок чередования аминокислотных остатков в полипептидных цепях (называемый первичной структурой) впервые именно таким образом был установлен для белка инсулина. Молекула инсулина имеет молекулярную массу 5733. Она состоит из двух полипептидных цепей, одна из которых содержит 21 аминокислотный остаток, вторая 30. Последовательности аминокислот в короткой и длинной цепях были определены в период 1945—1952 гг. Сенгером и его сотрудниками. Обе цепи в молекуле инсулина соединены дисульфидными связями S—S, образованными между остатками цистина. [c.393]

    Определение строения белков является очень сложной задачей, но за последние годы в химии белка достигнуты значительные успехи. Полностью определена химическая структура нескольких белков гормона инсулина (см, рис. 53), фермента, расщепляющего нуклеиновые кислоты, — рибонуклеазы (см. рис. 54), фермента лизоцима (рис. 56), [c.375]

    Атомы цинка расположены на оси симметрии 3-го порядка и связаны с тремя имидазольными кольцами гистидинов В-10. Роль атомов цинка не совсем ясна. Гексамеры легко образуют ромбические кристаллы даже внутри панкреатических клеток, синтезирующих инсулин. Структура инсулина воплощает в себе основные особенности строения олигомерных ферментов, обладающих циклической или диэдрической симметрией. Как и в случае гексамера инсулина, центральные части таких молекул часто открыты и торчащие боковые группы аминокислотных остатков (в случае инсулина имидазольные группы) образуют как бы гнезда , в которые могут входить ионы или молекулы, регулирующие активность белков. Однако функциональная роль цинка при действии инсулина остается пока неизвестной. [c.293]

    Объяснение первичной структуры инсулина английским биохимиком Ф. Сэнгером (род. 1898 г., лауреат Нобелевской премии 1958 г.). [c.284]

    Сопряжение я-электронов азота, углерода и кислорода придает пептидной связи особый характер. Полипептиды входят в структуру белков. Интересно, что первый синтез белка — инсулина, включающего в свою структуру 51 аминокислоту, который был выполнен до матричного синтеза обычным путем, проходил в 221 стадию. Так как выход продукта на каждой стадии никогда не достигает 100%, то выход конечного продукта многостадийного спн-теза очень мал. Кроме того очистка от побочных продуктов, получающихся на каждой стадии, очень трудна. [c.191]

    Успехи в изучении и синтезе белков. Уже первое ознакомление с белками дает некоторое представление о чрезвычайно сложном строении их молекул. На современном этапе развития химической науки еще очень трудно выявить структуры молекул белков. Первый белок, у которого в 1954 г. удалось расшифровать первичную структуру, был инсулин (регулирует содержание сахара в крови). Для этого потребовалось почти 10 лет. Молекула инсулина состоит из двух полипептидных цепочек. Одна из них содержит 21, а другая—30 аминокислотных остатков, В настоящее время осуществлен синтез инсулина. Для получения одной из полипептидных цепочек потребовалось провести 89 реакций, а для получения другой —138. В живых организмах синтез белков происходит очень быстро (иногда почти мгновенно), поэтому ученые настойчиво изучают его механизм. [c.21]

    Одной из главных функций серы в биогенном смысле является ее способность давать связи между полипептидными цепями протеинов таким образом, что возникает общее трехмерное расположение атомов в пространстве и притом такое, которое дает специфические возможности для тонкого функционирования в биохимических процессах. Приводим часть структуры молекулы инсулина быка, состоящей из двух цепей, соединенных мостиками из атомов серы. В одной цепи 21 аминокислота, а в дрз- гой 30. [c.369]

    К пептидным гормонам относятся инсулин, продуцируемый поджелудочной железой, регулирующий метаболизм углеводов, жиров и белков, содержащий 51 аминокислотный остаток секретин, вырабатываемый в желудочно-кишечном тракте, определяющий секреторную функцию желудочно-кишечного тракта, содержащий 21 аминокислотный остаток в передней доле гипофиза вырабатываются адренокор-тикотропин (34 аминокислоты), контролирующий активность коры надпочечников, пролактин (198 аминокислот), влияющий на рост грудных желез и секрецию молока в задней доле гипофиза вырабатываются вазопрессин (9 аминокислот), действующий как диуретик и сосудосуживающее, и окси-тоцин (9 аминокислот), стимулирующий сокращение гладкой мускулатуры. Это только иллюстративный перечень гормонов пептидной структуры — их значительно больше, многие из них еще изучены не полностью, как в плане строения, так и функциональности. Особенно важно и проблематично исследование связи их строения с активностью. Данные по связи структура — активность позволяют иногда получать синтетические полипептиды с активностью, превосходящей природные. Так, варьируя аминокислотный состав нейрогипофизных гормонов (схема 4.4.1) было получено около 200 аналогов, из которых один, [4-ТИг]-оксито-цин оказался высокоактивным. [c.81]

    Инсулин животных имеет несколько иную первичную структуру, отличающуюся от структуры инсулина человека. Инсулин, вводимый путем инъекций при заболевании человека диабетом, — это инсулин свиньи и крупного рогатого скота. Цепь А инсулина свиньи идентична цепи А инсулина человека, а цепь Б отличается лишь одним аминокислотным остатком (в положении 30 имеется Ala вместо Thr). Инсулин крупного рогатого скота имеет ту же цепь Б, что и инсулин свиньи, но цепь А отличается от цепи А инсулина человека тем, что имеет в положении 8—10 аминокислотные остатки Ala-Ser-Val вместо Thr-Ser-IIe. Инсулин слона имеет такую же цепь Б, как и инсулин человека, но цепь А отличается тем, что в положениях 9 и 10 вместо Ser-Ile находятся Gly-Val. Инсулин собаки идентичен инсулину свиньи и отличается от инсулина человека только последним звеном в цепи Б. [c.393]

    Первичная структура инсулина человека. [c.394]

    Чем первичная структура инсулина крупного рогатого скота отличается от первичной структуры инсулина человека  [c.427]

    Одним из наиболее распространенных методов исследования ориентированных пептидных цепей является метод инфракрасного дихроизма. При этом регистрируют спектры поглощения белка для двух взаимно перпендикулярных направлений поляризации падающего света. В одном случае вектор напряженности электрического поля параллелен пептидным цепям, а в другом — перпендикулярен им. Такая пара спектров для ориентированных фибрилл инсулина приведена на рис. 13-3. Считается, что молекулы инсулина находятся в этом случае в р-кон-формации и уложены поперек оси фибриллы (кросс-р-структура). Таким образом, когда вектор напряженности электрического поля параллелен оси фибриллы, он перпендикулярен пептидным цепям. Поскольку полоса амид I определяется прежде всего колебаниями карбонильной группы, которые в -структуре перпендикулярны пептидным цепям, интенсивность этой полосы больше для случая, когда вектор напряженности электрического поля тоже перпендикулярен пептидным цепям, чем для случая, когда этот вектор им параллелен (перпендикулярен оси фибриллы рис. 13-3). То же самое справедливо и для полосы амид А, которая определяется в основном растяжением связи N—Н. Дихроизм полосы амид П носит противоположный характер, поскольку здесь определяющую роль играет изгиб N—Н-связи, который осуществляется в пределах плоскости пептидной группы, но происходит в продольном направлении. [c.12]

    Вторичная структура белков. Это первый этап пространственной организации полипептидных цепочек, контролируемый водородными связями пептидных групп, как внутримолекулярными, так и межмолекулярными. Основными видами вторичной структуры являются а-спираль, характерная как для всей молекулы белка (кератин волос, миозин и тропомиозин мышц), так и только для отдельных участков белкового полимера (инсулин). Она стабилизирована внутримолекулярными водородными связями >С=0- Н-Ы[c.97]

    Химическое определение первичной структуры даже простого полипептида, каким бы методом оно не проводилось, требует огромной затраты времени и сил. В 1958 г. Сэнгер был удостоен Нобелевской премии по химии за расшифровку первичной структуры инсулина — полипептида, состоящего всего лишь из 51 аминокислоты (рис. 25-4). [c.404]

    Структура фенил -аланиновой цепи окисленного инсулина [c.518]

    Б. X, сформировалась как самостоятельная область во 2-й пол. 20 а на стыке биохимии и орг, химии, на основе традиционной химии прир. соединений. Ее развитие связано с именами Л. Полинга (открытие а-спирали как одного из главньп элементов пространста структуры полипептидной цепи в белках), А. Тодда (выяснение хим. строения нуклеотидов и первый синтез динуклеотида), Ф. Сенгера (разработка метода определения аминокислотной последовательности в белках и расшифровка с его помощью структуры инсулина), Дю Виньо (хим. синтез биологически активного гормона окситоцина), Д, Бартона и В. Прелога (конформационный анализ), Р. Вудворда (полный хим. синтез мн. сложных прир. соединений, в т.ч. резерпина, хлорофилла, витамина В] ) и др. крупных ученых. [c.288]

    Ринч предложила для инсулина структуру циклола Сг и пришла к выводу, что рентгеновские данные для инсулина подтверждают ее гипотезу [48]. Острая дискуссия, последовавшая затем, закончилась без видимых результатов. Выяснилась необходимость постановки более тонких экспериментов для получения более приемлемых данных. [c.339]

    Вторая половина XX столетия характеризуется резко возросшим интересом к познанию механизмов жизнедеятельности. Эпоха наблюдения и достаточно поверхностного анализа мира животных, растений и микроорганизмоп сменилась периодом решительного проникновения на уровень молекулярных и межмолеку-лярных взаимодействий в живых системах, вторжением в биологию методов и подходов физики, химии и математики. Как следствие этого процесса началась постепенная дифференциация наук, изучающих материальные основы жизни стали одна за другой появляться новые дисциплины, отражающие различные уровни исследования живой материи, различные углы зрения, различные экспериментальные приемы и методологические концепции. Классическая биохимия, которой бесспорно принадлежит пальма первенства в симбиозе биологии и точных наук, постепенно уступала дорогу новым направлениям. Вначале, на волне революционных событий в физике, возникла биофизика, значительно окрепшая уже в предвоенный период. Конец этого этапа был ознаменован и резкой активизацией исследований в генетике. Однако наиболее серьезное наступление началось в начале 50-х годов, когда возникли молекулярная биология, рождение которой часто отождествляется с открытием двойной спирали ДНК, а также биоорганическая химия, первые победы которой по праву связывают с установлением структуры инсулина и синтезом первого пептидного гормона — окситоцина, [c.5]

    Первьш белком, структуру которого задалось расшифровать, был гормон инсулин, регулирующий сахарный обмен в организме. Десять лет затратил на эту работу английский биохимик Фредерик Сэнгер, за что был удостоен в 1958 г. Нобелевской премии. Он, в частности, установил, что формула инсулина а молекула его состоит из двух цепей (одна содержит 21, а другая - 30 аминокислотных остатков), в определенной последовательности соединенных между собой -S-S- связями. [c.269]

    Многие пептиды являются гормонами. Так, например, присутствующие в гипофизе гормоны окситоцин и вазопрессин состоят из девяти аминокислотных остатков, т. е. относятся к нанопептидам. Первый влияет на протекание родов у женщин и образование молока, второй контролирует водный обмен в организме. Инсулин, вырабатываемый поджелудочной железой, контролирует метаболизм сахаридов, и его недостаток приводит к диабету. Инсулин состоит из двух цепей, одна из которых содержит 21, а другая — 30 аминокислотных остатков. Цепи соединены серными мостиками —5—5—, которые образуются при окислении групп 5Н двух цистеиновых остатков (при этом получается остаток аминокислоты цистина). Структура инсулина точно известна, и он был синтезирован. Другой пептидный гормон, адренокортикотропный гормон (АКТГ), регулирует синтез стероидных гормонов в коре надпочечников, а соматотропин контролирует рост. Оба этих гормона вырабатываются передней долей гипофиза. К гормонам, образующимся в пищеварительном тракте, относятся, например, секретин и гастрин. Среди пептидов имеются и антибиотики, например бацитрацин (составная часть фрамикоина). [c.191]

    Последовательность расположения аминокислотных остатков в полипептидной цепи создает первичную структуру белка она установлена в настоящее время для ряда природных белков. Осуществлен и синтез ряда белков, например инсулина (51 аминокислота), рибонуклеазы (124 аминокислотных остатка). Синтезы подобного рода требуют последовательного осуществления сотен химических операций. Большую помощь оказывает при этом метод твердофазного синтеза, предложенный Мэрифильдом в 1963 г. полипептидная цепь постепенно наращивается на полимерном носителе (полисти-рольной смоле) и лишь после завершения синтеза снимается е носителя. [c.635]

    В области синтеза белковых веществ за последние годы достигнуты блестящие результаты. Помимо полного синтеза антибиотика грамици дина синтезирован инсулин, осуществлен полный синтез фермента рибо-нуклеазы А. Синтезированный фермент имеет 78% активности природного фермента. Синтезирован пептидный фрагмент фермента N-aцeтил-глюкозаминидазы — лизоцима, структура которого была полностью установлена ранее (см. рис. 56). Синтезированный пептидный фрагмент, проявляет до 25% активности природного лизоцима. [c.377]

    L-изолейцин заменен на L-фенилаланин, а ь-лейцин — либо на L-лизин (в вазопрессине свиньи), либо на ь-аргинин (в вазо-прессине быка). Первичная структура инсулина быка, который содержит 51 аминокислотный остаток, показана ниже. Конец пептидной цепи, содержащий концевую аминогруппу, изображен символом Н-(например, H-Gly- в схеме означает h3N h3 O—), а конец, содержащий карбоновую кислоту, обозначен ОН (-Ala-ОН означает —NH H(СНз)СО2Н). [c.299]

    Третичная структура белков, обусловленная взаимодействием боковых цепей аминокислот, не приводит к такой высокой упорядоченности структуры, как в предыдущем случае. Помимо водородных связей важным фактором стабилизации третичной структуры является образование дисульфидных связей. Молекула инсулина имеет три таких дисульфидных мостика, два из которых соединяют две отдельные полипептидные цепи в молекулу. Третичная структура часто придает белковой молекуле такую конформацию, при которой гидрофильные группы (ОН, ЫНз, СО2Н) расположены на поверхности молекулы, а гидрофобные группы (алкильные и арильные боковые цепи)[ направлены внутрь, к центру молекулы. [c.302]

    Один из первых белков, первичная структура которого была установлена в 1954 г.,— гормон инсулин (регу ли-рует содержание сахара в крови), его молекула состоит из двух полипептидных цепей, которые связаны друг с другом (в одной цепи 2 аминокислотный остаток, в другсй — 30), Мл (инсулина) = 5700. [c.648]

    После определения последовательности в каждой цепи нужно было еще установить, какие полуцистиновые остатки связаны между собой. Санжер решил эту проблему (1955) частичным гидролизом инсулина в таких условиях, в которых связь S—S остается незатронутой. Образовавшиеся цистинпептиды, без отделения от других компонентов, фракционировали и окисляли до цистеиновых пептидов. Цистеино-вые пептиды каждой фракции отделяли электрофорезом и идентифицировали. Таким образом была выяснена полная структура этого белкового гормона (см. Схему ва стр. 699). [c.698]

    Первый белок, структура которого была полностью расшифрована — это инсулин. На эту работу Сэндшэр с сотрудниками затратил несколько лет (Нобелевская премия за 1958 г.). С помощью современной техники ту же работу можно осуществить за несколько недель. [c.94]

    В нач. 50-х гг. была выдвинута идея о трех уровнях организации белковых молекул (К. У. Линдерстрём-Ланг, 1952)-первичной, вторичной и третичной структурах. Определены первичные структуры инсулина (Ф. Сенгер, 1953) и рибонуклеазы (К. Анфинсен, С. Мур, К. Хёрс, У. Стайн, 1960). По данным рентгеноструктурного анализа были построены трехмерные модели миоглобина (Дж. Кендрю, 1958) и гемоглобина (М. Перуц, 1958) и, т. обр,, доказано существование в Б, вторичной и третичной структур, в т. ч. а-спирали, предсказанной Л. Полингом и Р, Кори в 1949-51. [c.248]

    Хим. синтез широко применяют для получения пептидов, в т. ч. биологически активных гормонов и их разнообразных аналогов, используемых для изучения взаимосвязи структуры и биол. функции, а также пептидов, несущих антигенные детерминанты разл. Б. и применяемьк для приготовления соответствующих вакцин. Первые хим. синтезы Б. в 60-е гг. (инсулина овцы и рибонуклеазы 5), осуществленные в р-ре с помощью тех же методов, к-рые используют при синтезе пептидов, были связаны с чрезвычайно большими сложностями. В каждом случае требовалось провести сотни хим. р-ций и окончательный выход Б. был очень низок (менее 0,1%), в результате чего полученные препараты не удалось очистить. Позже были синтезированы нек-рые химически чистые Б., в частности инсулин человека (П. Зибер и др.) и нейротоксин II из ядра среднеазиатской кобры (В. Т. Иванов). Однако до снх пор хим. синтез Б. представляет весьма сложную проблему и имеет скорее теоретич., чем практич. значение. Более перспективны методы генетической инженерии, к-рые позволяют наладить пром. получение практически важных Б, и пептидов. [c.253]

    В эти годы созданы новые физ.-хим. методы аиализа. Были заложены основы хроматографич. методов (М. С. Цвет, 1906). В 20-х гг. Т. Сведберг предложил использовать для седиментации белков ультрацентрифугу, вскоре этим методом был выделен ряд вирусов. В 30-х гг. А. Тизе-лиусом заложены основы электрофореза, в 1944 А. Мартином и др. создана распределит, хроматография, для определения структуры прир. соед. впервые стал использоваться рентгеноструктурный анализ (Д. Кроуфут-Ходжкин, 40-е гг.). Благодаря использованию физ.-хим. методов в 50-х гг. достигнуты крупные успехи в изучении двух важнейших классов биополимеров-белков и нуклеиновых к-т Э. Чар-гафф провел детальный хим. анализ нуклеиновых к-т, открыта двойная спираль ДНК (Дж. Уотсон и Ф. Крик, 1953), определена структура инсулина (Ф. Сенгер, 1953), одновременно осуществлен синтез пептидных гормонов -окситоцина и вазопрессина (Дю Виньо, 1953), открыт один из элементов пространственной структуры белков- спираль (Л. Полинг, 1951). В эти годы Р. Замечником открыты рибосомы, что послужило стимулом для изучения механизма синтеза белка. [c.292]

    Ц. Ифает важную роль в формировании пространств, структур ряда белков и пептидов, напр, инсулина, соматоста-тина и иммуноглобулинов. [c.388]

chem21.info

Инсулин, структура цепи - Справочник химика 21

    Порядок чередования аминокислотных остатков в полипептидных цепях (называемый первичной структурой) впервые именно таким образом был установлен для белка инсулина. Молекула инсулина имеет молекулярную массу 5733. Она состоит из двух полипептидных цепей, одна из которых содержит 21 аминокислотный остаток, вторая 30. Последовательности аминокислот в короткой и длинной цепях были определены в период 1945—1952 гг. Сенгером и его сотрудниками. Обе цепи в молекуле инсулина соединены дисульфидными связями S—S, образованными между остатками цистина. [c.393]     СТИН, полученные при ферментативном и частичном кислотном гидролизе инсулина и расфракционированные при помощи высоковольтного электрофореза, подвергали окислению надмуравьиной кислотой. Изучение строения окисленных пептидов и сравнение установленных последовательностей с известной уже структурой цепи позволило установить положение дисульфидных мостиков. Результатом всех проведенных исследований было установление полной формулы строения инсулина [385]. [c.135]

    Одной из главных функций серы в биогенном смысле является ее способность давать связи между полипептидными цепями протеинов таким образом, что возникает общее трехмерное расположение атомов в пространстве и притом такое, которое дает специфические возможности для тонкого функционирования в биохимических процессах. Приводим часть структуры молекулы инсулина быка, состоящей из двух цепей, соединенных мостиками из атомов серы. В одной цепи 21 аминокислота, а в дрз- гой 30. [c.369]

    Инсулин животных имеет несколько иную первичную структуру, отличающуюся от структуры инсулина человека. Инсулин, вводимый путем инъекций при заболевании человека диабетом, — это инсулин свиньи и крупного рогатого скота. Цепь А инсулина свиньи идентична цепи А инсулина человека, а цепь Б отличается лишь одним аминокислотным остатком (в положении 30 имеется Ala вместо Thr). Инсулин крупного рогатого скота имеет ту же цепь Б, что и инсулин свиньи, но цепь А отличается от цепи А инсулина человека тем, что имеет в положении 8—10 аминокислотные остатки Ala-Ser-Val вместо Thr-Ser-IIe. Инсулин слона имеет такую же цепь Б, как и инсулин человека, но цепь А отличается тем, что в положениях 9 и 10 вместо Ser-Ile находятся Gly-Val. Инсулин собаки идентичен инсулину свиньи и отличается от инсулина человека только последним звеном в цепи Б. [c.393]

    Одним из наиболее распространенных методов исследования ориентированных пептидных цепей является метод инфракрасного дихроизма. При этом регистрируют спектры поглощения белка для двух взаимно перпендикулярных направлений поляризации падающего света. В одном случае вектор напряженности электрического поля параллелен пептидным цепям, а в другом — перпендикулярен им. Такая пара спектров для ориентированных фибрилл инсулина приведена на рис. 13-3. Считается, что молекулы инсулина находятся в этом случае в р-кон-формации и уложены поперек оси фибриллы (кросс-р-структура). Таким образом, когда вектор напряженности электрического поля параллелен оси фибриллы, он перпендикулярен пептидным цепям. Поскольку полоса амид I определяется прежде всего колебаниями карбонильной группы, которые в -структуре перпендикулярны пептидным цепям, интенсивность этой полосы больше для случая, когда вектор напряженности электрического поля тоже перпендикулярен пептидным цепям, чем для случая, когда этот вектор им параллелен (перпендикулярен оси фибриллы рис. 13-3). То же самое справедливо и для полосы амид А, которая определяется в основном растяжением связи N—Н. Дихроизм полосы амид П носит противоположный характер, поскольку здесь определяющую роль играет изгиб N—Н-связи, который осуществляется в пределах плоскости пептидной группы, но происходит в продольном направлении. [c.12]

    Структура фенил -аланиновой цепи окисленного инсулина [c.518]

    Б. X, сформировалась как самостоятельная область во 2-й пол. 20 а на стыке биохимии и орг, химии, на основе традиционной химии прир. соединений. Ее развитие связано с именами Л. Полинга (открытие а-спирали как одного из главньп элементов пространста структуры полипептидной цепи в белках), А. Тодда (выяснение хим. строения нуклеотидов и первый синтез динуклеотида), Ф. Сенгера (разработка метода определения аминокислотной последовательности в белках и расшифровка с его помощью структуры инсулина), Дю Виньо (хим. синтез биологически активного гормона окситоцина), Д, Бартона и В. Прелога (конформационный анализ), Р. Вудворда (полный хим. синтез мн. сложных прир. соединений, в т.ч. резерпина, хлорофилла, витамина В] ) и др. крупных ученых. [c.288]

    РИС. 4-13. Структура инсулина свиньи. А. Аминокислотная последовательность А- и В-цепей, связанных друг с другом дисульфидными мостиками. Б. Пространственное расположение остовов полипептидных цепей в молекуле инсулина по данным рентгеноструктурного анализа. На рисунке указано также расположение некоторых боковых ароматических групп (см. также рис. 4-14 и 4-15). В. Схема, иллюстрирующая упаковку шести [c.292]

    На рис. 4-14 показано более детально, как связываются между собой субъединицы в димере инсулина, если смотреть на молекулу примерно вдоль оси симметрии 2-го порядка (отмеченной крестиком в центре кольца фенилаланина-25). Видно, что С-концы В-цепей вытянуты. Две антипараллельные цепи образуют р-структуру с двумя парами водородных связей. Если бы связывание было строго изологическим, эти две лары связей были бы полностью эквивалентными и располагались бы симметрично одна относительно другой. Прямая, проведенная через определенную точку на одной цепи и через ось симметрии 2-го порядка, должна была бы пройти через соответствующую точку на другой цепи. Однако, как показывает тщательный анализ, структура далеко не симметрична. [c.293]

    По-видимому, наиболее ярко асимметрия структуры, изображенной на рис. 4-14, проявляется в центре, где фенилаланин-25 правой цепи выступает из структуры вверх и влево. Если бы симметрия была идеальной, то соответствующая боковая группа левой цепи выступала бы вверх и вправо и эти два фенилаланина столкнулись бы носами , как это схематически показано на рис. 4-12, А. В действительности же в инсулине боковая группа одного из фенилаланинов как бы отклоняется, освобождая место для другой. [c.293]

    Что касается растворимых глобулярных белков (например, гемоглобина, инсулина, гамма-глобулина, яичного альбумина), то вопрос о характере вторичной структуры еще сложнее. Накапливаются данные, согласно которым и в этом случае а-спираль играет ключевую роль. Подобные длинные пептидные цепи не одинаковы по структуре по всей длине отдельные их участки свернуты в спирали и являются относительно жесткими другие участки образуют петли, скручены случайным образом и довольно подвижны. Установлено, что при денатурации белка спиральные участки раскручиваются и цепь в целом приобретает неупорядоченное строение. (Однако опыт показывает, что в определенных условиях раскручивание и возникновение спирали могут быть обратимыми процессами белок возвращается к исходной вторичной структуре, поскольку это расположение является наиболее стабильным для цепи с данной последовательностью аминокислот.) [c.1061]

    Полипептидный гормон инсулин участвует в регуляции углеводного обмена. Молекула бычьего инсулина содержит 51 аминокислоту и состоит из двух цепей. Последнее подтвернедается присутствием двух N-концевых аминокислот — глицина и фенилаланина. Цепь с N-концевым глицином называется А-цепью и содержит 21 аминокислоту цепь с N-концевым фенилаланином называется В-цепью, и в состав ее входит 30 аминокислот. Сэнгер и его сотрудники окислили инсулин надмуравьиной кислотой и провели хроматографическое разделение двух цепей. После этого каждую цепь подвергли ферментативному и кислотному гидролизу. На фиг. 27 и 28 указаны главные пептиды, полученные при гидролизе каждой из цепей, и приведены полные структуры цепей, установленные на основе этих данных. Видно, что места, в которых трипсин, химотрипсин и пепсин расщепляют цепи, согласуются с тем, что мы знаем о специфичности этих ферментов в отношении синтетических соединений. Обнаружено также и несколько дополнительных мест расщепления, в частности при гидролизе, катализируемом пепсином. Особо следует обратить внимание на то, что перекрывающиеся пептиды, полученные при использовании разных гидролитических методов, дополняют друг друга и позволяют однозначно установить общую аминокислотную последовательность. Для каждого из главных пептидов, приведенных на фиг. 27 и 28, аминокислотная последовательность была определена путем неспецифического гидролиза кислотой, установления последовательности аминокислот в образовавшихся ди-, три- и тетрапептидах и объединения полученных данных в общую картину. Как указывалось выше, в настоящее [c.91]

    Испытания на способность нейтрализовать антитела, связывающие бычий инсулин, показали, что это соединение обладает иммунологическими свойствами, подобными свойствам природного бычьего инсулина. Напротив, А-тресковый-В-бычий инсулин проявляет свойства, аналогичные свойствам природного трескового инсулина. Эти данные свидетельствуют о том, что иммунологические свойства инсулина определяются главным образом структурой цепи А. Берсон и Ялоу [218] (ср. [1482]) нашли, что свиной инсулин индуцирует образование антител в организме человека. Свиной инсулин отличается от инсулина человека природой С-концевого остатка цепи В. Оказалось, что после отщепления этого остатка или даже восьми С-концевых остатков цепи В образуется модифицированный инсулин, все еще сохраняющий способность реагировать с антителами организма человека, образовавшимися при действии свиного инсулина. Эти исследователи указывали также на различие трехмерных структур инсулина человека и свиньи как на одну из причин, определяющих природу антигенных свойств гормона. [c.475]

    Была исследована способность еще нескольких белков к образованию правильной структуры после восстановления дисульфидных связей. Для всех них кроме инсулина, явно выпадающего из общей картины, были получены сходные результаты. На рис. 1.11 показана структура инсулина она состоит из А-цепи, содержащей 21 остаток, и В-цепи, содержащей 30 остатков. А- и В-цепи соединены между собой двумя дисульфидными мостиками. Кроме того, в А-цепи имеется мостик между полуцистинами 6 и 11. При денатурации инсулина его цепи перепутываются, н гфи реокислении не удается получить достаточного количества нативного белка. Следует иметь в виду, однако, что in vivo инсулин синтезируется как белок-предщественник — проинсулин (см. рис. 1.11). Далее эта молекула подвергается ферментативному расщеплению, фрагмент из остатков с 31-го по 63-й удаляется, и получается функционально активный иноглин. При восстановлении и реокислении проинсулина иммунологическая активность, свойственная нативному белку, восстанавливается. Более того, обрабатывая такой проинсулин трипсином, можно получить биологически активный инсулин. Таким образом, дисульфидные связи самопроизвольно формируются в проинсулине и затем сохраняются в инсулине. Без них инсулин не способен принять нативную конформацию. Возникает естественный вопрос находится ли инсулин в термодинамически наиболее стабильной конформации, по крайней мере в отнощении расположения дисульфидных связей  [c.274]

    Первьш белком, структуру которого задалось расшифровать, был гормон инсулин, регулирующий сахарный обмен в организме. Десять лет затратил на эту работу английский биохимик Фредерик Сэнгер, за что был удостоен в 1958 г. Нобелевской премии. Он, в частности, установил, что формула инсулина а молекула его состоит из двух цепей (одна содержит 21, а другая - 30 аминокислотных остатков), в определенной последовательности соединенных между собой -S-S- связями. [c.269]

    Иисулии состоит из двух полнпептидных цепей (А-цепи и В-цепи) по 21 и 30 аминокислотных остатков соответственно, соединенных двумя дисульфидными мостиками в бициклическую систему. Кроме того, А-цепь имеет собственный дисульфидный мостик (рис. 2-40). Интересно, что инсу-лины из разных организмов, несмотря на различные аминокислотные последовательности, в стандартных тестах (спазмолитический тест на мышах, окисление глюкозы в жировых тканях или в отдельных жировых клетках) показывают примерно равную биологическую активность. Так, инсулин морских свинок отличается от инсулина крысы не менее чем в 17 положениях. Обычно отличия в первичной структуре велики настолько, насколько далеко отстоят организмы друг от друга в филогенетическом развитии. [c.263]

    Многие пептиды являются гормонами. Так, например, присутствующие в гипофизе гормоны окситоцин и вазопрессин состоят из девяти аминокислотных остатков, т. е. относятся к нанопептидам. Первый влияет на протекание родов у женщин и образование молока, второй контролирует водный обмен в организме. Инсулин, вырабатываемый поджелудочной железой, контролирует метаболизм сахаридов, и его недостаток приводит к диабету. Инсулин состоит из двух цепей, одна из которых содержит 21, а другая — 30 аминокислотных остатков. Цепи соединены серными мостиками —5—5—, которые образуются при окислении групп 5Н двух цистеиновых остатков (при этом получается остаток аминокислоты цистина). Структура инсулина точно известна, и он был синтезирован. Другой пептидный гормон, адренокортикотропный гормон (АКТГ), регулирует синтез стероидных гормонов в коре надпочечников, а соматотропин контролирует рост. Оба этих гормона вырабатываются передней долей гипофиза. К гормонам, образующимся в пищеварительном тракте, относятся, например, секретин и гастрин. Среди пептидов имеются и антибиотики, например бацитрацин (составная часть фрамикоина). [c.191]

    Последовательность расположения аминокислотных остатков в полипептидной цепи создает первичную структуру белка она установлена в настоящее время для ряда природных белков. Осуществлен и синтез ряда белков, например инсулина (51 аминокислота), рибонуклеазы (124 аминокислотных остатка). Синтезы подобного рода требуют последовательного осуществления сотен химических операций. Большую помощь оказывает при этом метод твердофазного синтеза, предложенный Мэрифильдом в 1963 г. полипептидная цепь постепенно наращивается на полимерном носителе (полисти-рольной смоле) и лишь после завершения синтеза снимается е носителя. [c.635]

    L-изолейцин заменен на L-фенилаланин, а ь-лейцин — либо на L-лизин (в вазопрессине свиньи), либо на ь-аргинин (в вазо-прессине быка). Первичная структура инсулина быка, который содержит 51 аминокислотный остаток, показана ниже. Конец пептидной цепи, содержащий концевую аминогруппу, изображен символом Н-(например, H-Gly- в схеме означает h3N h3 O—), а конец, содержащий карбоновую кислоту, обозначен ОН (-Ala-ОН означает —NH H(СНз)СО2Н). [c.299]

    Третичная структура белков, обусловленная взаимодействием боковых цепей аминокислот, не приводит к такой высокой упорядоченности структуры, как в предыдущем случае. Помимо водородных связей важным фактором стабилизации третичной структуры является образование дисульфидных связей. Молекула инсулина имеет три таких дисульфидных мостика, два из которых соединяют две отдельные полипептидные цепи в молекулу. Третичная структура часто придает белковой молекуле такую конформацию, при которой гидрофильные группы (ОН, ЫНз, СО2Н) расположены на поверхности молекулы, а гидрофобные группы (алкильные и арильные боковые цепи)[ направлены внутрь, к центру молекулы. [c.302]

    Один из первых белков, первичная структура которого была установлена в 1954 г.,— гормон инсулин (регу ли-рует содержание сахара в крови), его молекула состоит из двух полипептидных цепей, которые связаны друг с другом (в одной цепи 2 аминокислотный остаток, в другсй — 30), Мл (инсулина) = 5700. [c.648]

    После определения последовательности в каждой цепи нужно было еще установить, какие полуцистиновые остатки связаны между собой. Санжер решил эту проблему (1955) частичным гидролизом инсулина в таких условиях, в которых связь S—S остается незатронутой. Образовавшиеся цистинпептиды, без отделения от других компонентов, фракционировали и окисляли до цистеиновых пептидов. Цистеино-вые пептиды каждой фракции отделяли электрофорезом и идентифицировали. Таким образом была выяснена полная структура этого белкового гормона (см. Схему ва стр. 699). [c.698]

    Гормон инсулин — это небольшой белок, состоящ,ий нз двух полипептидных цепей (обозначаемых латинскими буквами А и В), которые связаны друг с другом дисульфидными мостиками (рис. 4-13, Л). На рис. 4-13,5 схематически изображена структура этого белка согласно рентгеноструктурным данным представлены только остовы полипептидных цепей и несколько боковых групп [54, 55]. На этом рисунке В-цепъ расположена за А-цепью. Начиная от N-кoнцeвoгo фенилаланина- , пептидная цепь делает плавный поворот, затем примерно в центре молекулы образует три а-спиральных витка, и наконец после крутого разворота направляется в верхний левый угол рисунка, обра- [c.291]

    Внутримолекулярные дисульфидные связи имеются, например, в окситоцине, вазо-прессиие, в А-цепи инсулина и в рибоиуклеазе. Межмолекулярные дисульфидные связи соединяют между собой цепи пептидов, причем ковалентно связанными могут быть как идентичные цепи, как в окисленной форме глутатиоиа, так и различные цепи, как в инсулине. Дисульфидные связи имеют большое значение для образования и стабилизации определенных пептидных и белковых структур. [c.87]

    Интересный новый подход с синтезу инсулина вытекает из его пространственной структуры (рис. 2-42). Модель молекулы инсулина можно расположить в пространстве таким образом, что N-кoнeц А-цепи и С-конец В-цепи, т. е. места соединения с С-фрагментом, находятся друг от друга на расстоянии 1 нм. Можно подобрать сшивающий реагент, который формально может взять на себя функцию С-цепи и фиксировать конформацию [c.266]

    Дисульфидные мостики, приводящие к образованию петель в полипептидной цепи, обнаружены в нескольких белках (пепсине, тиоредоксине, А-цепи инсулина, фиброине шелка [145], липоамидной дегидрогеназе и других пиридиннуклеотиддисульфидных окси-редуктазах [ 111 ]). Между мостиковыми цистеиновыми остатками в полипептидной цепи находится 2—4 остатка. Рассмотрение моделей, а также рентгеноструктурный анализ показывают, что такие петли имеют уплощенную жесткую структуру. В глутатионредуктазе и родственных ферментах в петле участвует изоаллоксазиновое кольцо FAD [123, 124]. [c.69]

    В заключение следует упомянуть, что для исследования взаимосвязи между структурой и биологическим действием было проведено значительное число синтезов цепей инсулина с различными последовательностями. После комбинирования таких аналогов с природными или синтетическими цепями определялся спектр их биологического действия. Так как природный инсулин относительно легко доступен, структурные изменения в молекуле могут быть проведены с помощью семисинтетических операций, причем такой частичный синтез возможен как исключительно химическим путем, так и с применением ферментативных методов. Подробности приведены в рекомендуемых обзорах. Поскольку инсулин, будучи макромолекулой, действует иммуногенно, для терапевтических целей очень важно, чтобы иммунный ответ в организме больных диабетом оставался на возможно низком уровне. Как правило, у большинства больных это так. В особых случаях применяют инсулин с иJмeнeнными антигенными свойствами (имеется в виду инсулин из других видов и модифицированный инсулин с уменьшенными антигенными свойствами). [c.269]

    К середине 1940-х годов пептидная теория белков Фишера и Вальд-шмидт-Лейтца была почти повсеместно принята. Встал вопрос о точном знании деталей химического строения, т.е. о конкретном порядке расположения аминокислот в белковых цепях. Впервые такое сложное исследование удалось провести в течение десятилетия (1945-1954 гг.) ф. Сенгеру, определившему аминокислотную последовательность инсулина. Вторым белком была рибонуклеаза А. Полная структура этого фермента расшифрована С. Муром, К. Хирсом и У. Стейном (1960 г.). Вскоре идентификация химичекого строения белков стала производиться с помощью автоматических секвенаторов и приобрела рутинный характер. Однако достижения в решении первой фундаментальной задачи проблемы белка не принесли удовлетворения. Сначала не вызывало сомнений, что химические и физические свойства белков получат свое объяснение, как только станет известно химическое строение их молекул. Однако основанная на опыте всей органической химии и биохимии надежда на то, что установление химического типа и строения молекул окажется достаточным для понимания хотя бы в общих чертах их специфического функционирования, не оправдалась. Тем самым определение структуры из конечной цели исследования превратилось в необходимый для последующего изучения белков начальный этап. Утвердилась мысль, что химическая универсальность и практически необозримое многообразие свойств соединений этого класса при строгой специфичности его отдельных представителей связаны с особенностями пространственных структур белковых молекул. [c.67]

    Возможны и другие типы связей, приводящие к образованию полипептидов трехмерной структуры, но их существование не получило еще экспериментального подтверждения. Так, имеются основанные на реакции Гофмана данные [170, 183] о наличии связей между полипептидными цепями инсулина, глиадина и химотрипсина за счет аминогрупп и со-кар-боксильных групп изоглутаминового или изоаспарагинового остатка. В случае инсулина существование подобных связей [c.168]

    Таким путем были установлены структуры окситоцина и а-кортикотро-пина (стр. 1047). Одним из наиболее замечательных достижений в этой области было установление полной последовательности аминокислот в молекуле инсулина, выполненное в Кембриджском университете группой, руководимой Ф.Сэнджером, который за эту работу был удостоен Нобелевской премии в 1958 г. (см. задачу 12, стр. 1067). Число пептидов и белков, структуры которых полностью расшифрованы, постоянно увеличивается сюда относится гемоглобин, содержащий четыре цепи, в каждой из которых имеется более 140 аминокислотных остатков, и химотрипсиноген, цепь которого содержит 246 остатков. [c.1050]

    Большое сходство в химических и физических свойствах между синтетическими полипептидами Фишера и некоторыми белками (протеинами) оказало дальнейшую поддержку предположению, ранее выдвинутому Фишером и независимо от него Хофмейстером в 1902 г. о пептидном строении белков (протеинов). Эта теория предполагала, что молекула белка (протеина) построена только из цепей а-аминокислот (и позже, конечно, были включены а-ими-нокислоты), связанных друг с другом пептидными (амидными) связями между а-амино- и а-карбоксильными группами [см. формулу (1)].Сам Фишер учел, что возможны и другие способы соединения между аминокислотами в молекуле белка (протеина) и добавил к имеющимся сомнениям вопросы о размере и сложности природных белков, что вызвало в период 1920—1940 гг. различные предположения [3] об альтернативных способах связи между остатками аминокислот. Сэнджер [4] писал в 1952 г., что самым убедительным доводом в поддержку пептидной теории строения белков (протеинов) в действительности было то, что с 1902 г.— со времени ее возникновения, не были найдены опровергающие ее факты сам Сэнджер привел одно из первых убедительных доказательств этой теории, установив полную структуру белкового гормона инсулина. [c.218]

    В настоящее время выяснение первичной структуры белков является вопросом времени и технического оснащения лабораторий. Полностью выяснена первичная структура многих природных белков и прежде всего инсулина, содержащего 51 аминокислотный остаток [Сэнджер Ф., 1954]. Более крупным белком с выясненной первичной структурой оказался иммуноглобулин, в четырех полипептидных цепях которого насчитывается 1300 аминокислотных остатков. За эту работу Дж. Эдельман и Р. Портер были удостоены Нобелевской премии (1972). [c.56]

chem21.info

Инсулин, предшественники - Справочник химика 21

    Инсулин образуется в -клетках островков Лангерганса из своего предшественника — проинсулина. По химической природе он является белком. Молекула инсулина состоит из двух полипептидных цепей, в которые включена 51 аминокислота. Полипептидные цепи соединены в двух точках дисульфидными мостиками. Инсулин дает почти все характерные цветные реакции на белок. [c.176]     Инсулин, получивший свое название от наименования панкреатических островков (лат. insula—островок), был первым белком, первичная структура которого была раскрыта в 1954 г. Ф. Сэнджером (см. главу 1). В чистом виде инсулин был получен в 1922 г. после его обнаружения в экстрактах панкреатических островков Ф. Бантингом и Ч. Бестом. Молекула инсулина, содержащая 51 аминокислотный остаток, состоит из двух полипептидных цепей, соединенных между собой в двух точках дисульфидными мостиками. Строение инсулина и его предшественника проинсулина приведено в главе 1 (см. рис. 1.14). В настоящее время принято обозначать цепью А инсулина 21-членный пептид и цепью В—пептид, содержащий 30 остатков аминокислот. Во многих лабораториях осуществлен, кроме того, химический синтез инсулина. Наиболее близким по своей структуре к инсулину человека является инсулин свиньи, у которого в цепи В вместо треонина в положении 30 содержится аланин. [c.268]

    Расшифрованы первичные структуры миоглобина человека (153 аминокислотных остатка), а-цепи (141) и 3-цепи (146) гемоглобина человека, цитохрома С из сердечной мышцы человека (104), лизоцима молока человека (130), химотрипсиногена быка (245) и многих других белков, в том числе ферментов и токсинов. На рис. 1.14 представлена последовательность аминокислотных остатков проинсулина. Видно, что молекула инсулина (выделена темными кружками), состоящая из двух цепей (А-21 и В-30 аминокислотных остатков), образуется из своего предшественника-проинсулина (84 аминокислотных остатка), представленного одной полипептидной цепью, после отщепления от него пептида, состоящего из 33 аминокислотных остатков. Строение молекулы инсулина (51 аминокислотный остаток) схематически можно представить следующим образом  [c.57]

    Инсулин — гормон поджелудочной железы, регулирующий углеводный обмен и поддерживающий нормальный уровень сахара в крови. Недостаток этого гормона в организме приводит к одному из тяжелейших заболеваний — сахарному диабету, который как причина смерти стоит на третьем месте после сердечно-сосудистьк заболеваний и рака. Инсулин — небольшой глобулярный белок, содержащий 51 аминокислотный остаток и состоящий из двух полипептидных цепей, связанных между собой двумя дисульфидными мостиками. Синтезируется он в виде одноцепочечного предшественника — препроинсулина, содержащего концевой сигнальный пептид (23 аминокислотных остатка) и 35-звенный соединительный пептид (С-пептид). При удалении сигнального пептида в клетке образуется проинсулин из 86 аминокислотных остатков, в котором А и В-цепи инсулина соединены С-пеп-тидом, обеспечивающим им необходимую ориентацию при замыкании дисульфидных связей. После протеолитического отщепления С-пептида образуется инсулин. [c.132]

Рис. 25-17. Образование инсулина. Исходным предшественником инсулина является препро-инсулин (полная структура показана внизу), который после ферментативного отщепления с К-конца 23 аминокислотных остатков превращается в проинсулин. Проинсулин в свою очередь подвергается действию пептидаз в двух местах, показанных стрелками, и превращается в инсулин (выделен красным цветом). Далее с каждого конца вырезанного промежуточного пептида отщепляется по дипептиДу, после чего остается С-пептид, содержащий 30 аминокислотных остатков. Рис. 25-17. <a href="/info/1295247">Образование инсулина</a>. <a href="/info/1420052">Исходным предшественником</a> инсулина является препро-инсулин (<a href="/info/1541946">полная структура</a> показана внизу), который после ферментативного отщепления с К-конца 23 аминокислотных остатков превращается в проинсулин. Проинсулин в свою очередь подвергается <a href="/info/614811">действию пептидаз</a> в <a href="/info/1696521">двух</a> местах, показанных стрелками, и превращается в инсулин (<a href="/info/727933">выделен красным</a> цветом). Далее с каждого конца вырезанного промежуточного пептида отщепляется по дипептиДу, после чего остается С-пептид, содержащий 30 аминокислотных остатков.
    Адреналин (I) — гормон мозгового вещества надпочечников вместе со своим непосредственным предшественником норадреналином (И) он присутствует там в высокой концентрации (у человека 0,5 л г на I г сухой ткани). Однако относительные концентрации этих аминов в мозговом веществе надпочечников чрезвычайно варьируют у различных видов кроме того, эти амины, вероятно, могут выделяться селективно. Инсулин в определенных условиях вызывает почти полное исчезновение адреналина (но не норадреналина) в мозговом веществе. По-видиМому, можно предположить существование двух типов клеток в мозговом веществе надпочечников, причем один тип клеток секретирует адреналин, а другой — норадреналин. [c.360]

    В норме инсулин выделяется в кровь после приема пищи и обеспечивает анаболические процессы увеличивает скорость синтеза и накопления белков, а также веществ, являющихся резервом энергии (гликоген и липиды). Практически все клетки (кроме нервных) нуждаются в инсулине для перевода предшественников [c.390]

    Предшественник инсулина (проинсулин) состоит из одной полипептидной цепи. Следовательно, структуру инсулина кодирует 1 цистрон (транскриптон). [c.400]

    Пре-последовательность отличается от так называемой про-последовательности, под которой подразумеваются те дополнительные участки, которые имеются в белках, существующих в виде стабильных предшественников. В некоторых белках могут иметься и те и другие. Например, инсулин первоначально синтезируется как пре-проинсулин пре-последовательность отщепляется во время секреции, образуя проинсулин, который далее подвергается процессингу с превращением в зрелый инсулин. [c.128]

    Д. Предшественники пептидов, родственных инсулину. Структурная организация молекулы прогормона неспецифична для предшественника инсулина. Предшественники близкородственных инсулину пептидных гормонов (релаксина и инсулиноподобных факторов роста) имеют такую же организацию (рис. [c.252]

    L-T.-кодируемая заменимая аминбкислота. Входит в состав почти всех белков, в частности пепсина и инсулина. В животном организме необратимо образуется из фенилаланина. Из Т. в организме синтезируются ряд важных в-в тирамин и 3,4-дигидроксифенилаланин (предшественники катехоламинов), а также динодтирозин, из к-рого образуется гормон тироксин. [c.589]

    Чрезвычайно широкая распространенность Ф.-к. в тканях животных, растений и микроорганизмов определяется ключевой ролью фермента в образовании глюкозы из физиол. предшественника - пировиноградной к-ты. Количество фермента в тканях млекопитающих регулируется гормонами шюкагон увеличивает синтез Ф.-к., а инсулин - снижает. [c.140]

    Новый стратегический вариант синтеза инсулина появился как следствие открытия Штайнером [675] в 1967 г. проиисулина. При этом обнаружено, что биосинтез инсулина идет через одноцепочечный предшественник. В од- [c.264]

    Специфический протеолиз — удобный процесс для образования сложных белковых структур. Во многих случаях белки модифицируются путем расщепления одной или нескольких пептидных связей. Для обозначения этого типа катализируемых ферментами реакций, которые играют доминирующую роль во многих физиологических процессах [137—139], используются термины ограниченный протеолиз или специфический протеолиз (табл. 4.2). Хорошо известными примерами специфического расщепления полипептидов являются активация предшественников пищеварительных ферментов, морфогенетические процессы в бактериальных вирусах и каскадные процессы коагуляции и комплементного действия крови [138, 140]. Недавно было показано, что механизмы посттрансля-ционного расщепления имеют место также при образовании таких разных белков, как инсулин, коллаген и специфичные белки вирусов. Кроме того, высокоспецифичное протеолитическое расщепление ферментов важно при инактивации и активации специфических внутриклеточных ферментов (табл. 4.2). [c.72]

    Гормон инсулин имеет две пептидные цепи А (20 остатков) и В (30 остатков). Они получаются из одного белкового предшественника, препроинсулина, в котором 23 из его 108 аминокислот предшествуют пептиду и 35 соединяют -пептид с Л-пепти-дом. Молекула мРНК для этого белка имеет, таким образом, по крайней мере 327 нуклеотидов. [c.213]

    К настоящему времени субъединичная структура обнаружена у нескольких сотен белков. Однако только для немногих белков, в том числе для молекулы гемоглобина, методом рентгеноструктурного анализа расшифрована четвертичная структура . Основными силами, стабилизирующими четвертичную структуру, являются нековалентные связи между контактными площадками протомеров, которые взаимодействуют друг с другом по типу комплементарности—универсальному принципу, свойственному живой природе. Структура белка после его синтеза в рибосоме может частично подвергаться модификации (посттрансляционный процессгшг) например, при превращении предшественников ряда ферментов или гормонов (инсулин). [c.71]

    Согласно современным представлениям, биосинтез инсулина осуществляется в 3-клетках панкреатических островков из своего предшественника проинсулина, впервые выделенного Д. Стайнером в 1966 г. В настоящее время не только выяснена первичная структура проинсулина, но и осуществлен его химический сгштез (см. рис. 1.14). Проинсулин представлен одной полипептидной цепью, содержащей 84 аминокислотных остатка он лишен биологической, т.е. гормональной, активности. Местом синтеза проинсулина считается фракция микросом 3-клеток панкреатических островков превращение неактивного проинсулина в активный инсулин (наиболее существенная часть синтеза) происходит при перемещен проинсулина от рибосом к секреторным гранулам путем частичного протеолиза (отщепление с С-конца полипептидной цепи пептида, содержащего 33 аминокислотных остатка и получившего наименование соединяющего пептида, или С-пепти-да). Длина и первичная структура С-пептида подвержена большим изменениям у разных видов животных, чем последовательность цепей А и В инсулина. Установлено, что исходным предшественником инсулина является препроинсулин, содержащий, помимо проинсулина, его так называемую лидерную, или сигнальную, последовательность на N-конце, состоящую из 23 остатков аминокислот при образовании молекулы проинсулина этот сигнальный пептид отщепляется специальной пептидазой. Далее молекула проинсулина также подвергается частичному протеолизу, и под действием трипсиноподобной протеиназы отщепляются по две основные аминокислоты с N- и С-конца пептида С—соответственно дипептиды Apr—Apr и Лиз— —Apr (см. рис. 1.14). Однако природа ферментов и тонкие механизмы этого важного биологического процесса—образование активной молекулы инсулина окончательно не выяснены. [c.268]

    Наиболее вероятной в настоящее время представляется мембранная локализация первичного действия почти всех белковых гормонов, включая инсулин. Получены доказательства существования специфического рецептора инсулина на внешней плазматической мембране почти всех клеток организма, а также образования инсулинрецепторного комплекса. Рецептор синтезируется в виде предшественника — полипептида (1382 аминокислотных остатка, мол. масса 190000), который далее расщепляется на а-и -субъединицы, т.е. на гетеродимер (в формуле со,— ,), связанные дисульфидными связями. Оказалось, что если а-субъединицы (мол. масса 135000) почти целиком располагаются на внешней стороне биомембраны, выполняя функцию связывания инсулина клетки, то -субъединицы (мол. масса 95000) представляют собой трансмембранный белок, выполняющий функцию преобразования сигнала (рис. 8.1). Концентрация рецепторов инсулина на поверхности достигает 20000 на клетку, и период их полужизни составляет 7—12 ч. [c.270]

    Как известно, участок ДНК, несущий информацию о синтезе индивидуального белка, называется геном, а участок, контролирующий синтез единственной полипептидной цепи и ответственный за него,— цистроном. Следовательно, если белок состоит из нескольких (более одного) полипептидов, то естественно предположить, что в синтезе такого белка должны участвовать несколько (более одного) цистронов. Это не всегда соответствует действительности, особенно если полипептидные цепи идентичны (например, а,- и р -цепи гемоглобина). Если, например, пептидные цепи какой-либо одной белковой молекулы являются неидентичными, то это не всегда означает, что они синтезируются как результат действия разных цистронов. Подобный белок может синтезироваться в виде единственной полипептидной цепи с последующими протеолитическими разрывами в одном или нескольких местах и отщеплением неактивных участков. Типичным примером подобной модификации является гормон инсулин, синтезирующийся в виде единого полипептида препроинсулина, который после ферментативного гидролиза превращается сначала в неактивный предшественник проинсулин, а затем в активный гормон инсулин, содержащий две разных размеров и последовательности полипептидные цепи (см. рис. 1.14). [c.532]

    Липофилизация инсулина достигалась в том случае, когда с тремя свободными аминогруппами инсулина был ковалентно связан диглицерид янтарной кислоты. Производное инсулина проявило сильные липофильные свойства, но плохую смачиваемость. Его подвергали анализу методом высокоэффективной жидкостной хроматографии, кругового дихроизма и светорассеяния в 10% растворе изопропанола, а также биологическому анализу in vitro на крысах-диабетиках. Третичная структура производного проверялась методом кругового дихроизма. Динамическим светорассеянием и просвечивающей электронной микроскопией (TDM) определяли спонтанную агрегацию частиц производного инсулина. Диаметр наименьших частиц, обнаруживаемых методом электронной микроскопии, составлял 10-15 нм. Результаты этих анализов позволили разработать схематическое изображение синтезированного предшественника инсулина. Эти методьт анализа могут быть использованы для быстрого изучения и разработки схематического изображения новых производных инсулина. [c.408]

    Процессинг инсулина нз предшественников (про- и препроннсулина) происходит в результате  [c.546]

    Помимо образования из предшественника 1-М0Р имеет и другие общие с гормонами свойства он обладает существенной структурной гомологией с инсулином и релаксином, а также проявляет неподавляемую инсулиноподобную активность (М81ЬА). Очевидно, имеется эволюционная связь с этими пептидными гор.монами. [c.326]

    Образование и созревание гормонов. Эти процессы связаны с различными внутриклеточными механизмами. Предшественниками гормонов могут быть стероиды, ароматические аминокислоты или белки. Некоторые гормоны синтезируются в активном состоянии, для других необходимо постсинтетиче-ское созревание. К первым относятся кортикостероиды, ко вторым — белковые гормоны, например инсулин, который синтезируется в виде белка-предшественника проинсулина, а затем превращается в активный инсулин. Прогормоны после завершения их синтеза, как правило, локализуются в секреторных гранулах и по мере надобности ферментативным путем превращаются в активные гормоны. Активация гормонов возможна и в периферических тканях. Например, гормон щитовидной железы тироксин в печени превращается в более активный 3-иод-тиронин. [c.133]

    Биосинтез. У животных и человека инсулин синтезируется в р-клетках островков Лангерганса. Гены, кодируюшие этот белок у человека, локализованы в коротком плече 11-й хромосомы. Зрелая инсулиновая мРНК состоит из 330 нуклеотидов, что соответствует 110 аминокислотным остаткам. Именно такое их количество содержит предшественник инсулина — препроинсулин. Он состоит из одной полипептидной цепи, на Л -конце которой находится сигнальный пептид (24 аминокислоты), а между А- и В-цепями локализован С-пептид, содержащий 35 аминокислотньгх остатков. [c.165]

    Биосинтез. Глюкагон, подобно многим биологически активным пептидам, синтезируется в виде более крупного предшественника — проглюкагона. Созревание гормона происходит в аппарате Гольджи, после чего он секретируется в кровь по механизму, подобному для инсулина. Освобождение глюкагона регулируется глюкозой по принципу обратной связи. Увеличение концентрации глюкозы в крови подавляет секрецию, а дефицит ее стимулирует выброс глюкагона в кровяное русло. [c.167]

    Многие гормоны синтезируются в виде предшественников — прогормонов. В виде прогормонов образуются инсулин, паратгормон, липотропин и другие белки. Функциональная роль дополнительной последовательности амииокислот у предшественников гормонов, по-видимому, в каждом случае своя. Например, наличие С-пепТида в проинсулине необходимо для правильной укладки в пространстве молекулы в процессе ее биосинтеза, для замыкания соответствующих дисульфидных Связей между будущими цепями А и В инсулина. Значительные размеры С-пептида связаны с тем, что он должен увеличивать растворимость синтезированной молекулы инсулина. После того как вновь синтезированная молекула лроиисулина из-за высокой растворимости диффундирует в цистерны аппарата Гольджи, там происходит отщепление С-пептида ферментом трипсинового типа и образуется уже окончательная форма молекулы — биологически активный инсулин. [c.247]

    В частности, в СССР получены бактериальные штаммы, способные продуцировать проинсулин человека — биосинтетический предшественник инсулина. ГТроинсулии состоит из одной полипептидной цепи длиной 86 аминокислотных остатков и может быть превращен [c.381]

    ПРОИНСУЛИН, белок — предшественник инсулина. Молекула включает 81—86 аминокислотных остатков (в зависимости от вида животного) мол. м. 9000. На N-конце молекулы располагается В-цепь инсулина, на С-конце — А-цепь. Цепи инсулина соединены т.н. С-пептидом, построенным из 27—33 аминокислотных остатков. Общая схема строения молекулы НзМ—В-цепь—Арг—Арг—С-пеп-тид—Лиз—Лиз—А-цепь—СООН (буквенные обозначения см. в ст. а-Аминокислоты). Видовые различия в П. наиб, выражены на участке С-пептида. П. обеспечивает правильное замыкание дисульфидных связей при образовании двухцепочечной структуры инсулипа. Превращ. П.- в инсулин в 0-клетках островков поджелудочной железы осуществляется специфическими ферментами, при этом от П. отделяется С-пептид. [c.480]

    Основное внимание мы будем уделять тем белкам, структура которых в ативном состоянии была (расшифровала с 1по мощью рентгеноструктурного анализа лизоциму, рибонуклеазе, миоглоби-ну, гемоглобину и инсулину. Некоторое внимание будет уделено трипсину, химотрипсину и их предшественникам, а также цитохрому, для которых структура известна частично или, по крайней мере, определена последовательность аминокислот. В основном исследования выполнялись с помощью протонного магнитного резонанса, но ограниченное применение в специальных исследованиях получил и ЯМР других ядер ( Р, Р, и др.). [c.348]

    Научные работы относятся к биохимии и молекулярной биологии. Выполнил основополагающие исследования по выделению первого регуляторного белка, управляющего активностью лактозного гена (оперена), по изучению механизма специфического взаимодействия белков и ДНК, по установлению первичной структуры ряда ДНК, а также по клонированию гена— предшественника инсулина — и синтезу этого белка в бактериальной клетке. Совместно со своим сотрудником А. Мэксемом расщепил (1973) ДНК кишечной палочки посредством фермента — дезоксирибонуклеазы и выделил определенный участок (лак —оператор), который оказался двухцепочечным фрагментом, состоящим из 25 комплементарных пар оснований. Совместно с тем же сотрудником предложил (1977) один из удачных методов расшифровки первичной структуры ДНК, базирующийся на принципе локализации оснований по величине соответствующих фрагментов ДНК. [c.141]

    Некоторые полипептидные гормоны, в том числе инсулин и глюкагон, синтезируются в клетках эндокринных желез сначала в виде неактивных предшественников, или прогормонов. Такие неактивные предшественники имеют более длинные полипептидные цепи, чем соответствующие активные гормоны. Примером может служить проинсулин (полипептидная цепь которого содержит приблизительно 80 аминокислотньк остат- [c.782]

    Инсулин синтезируется В- или р-клет-ками поджелудочной железы в виде неактивного предшественника. Непосредственным предшественником инсулина является ироинсулин - одноцепочечный полипептид, содержащий в зависимости от вида животного от 78 до 86 аминокислотных остатков (рис. 25-17). Проинсулин из поджелудочной железы крупного рогатого скота состоит из 81 остатка [c.797]

    Некоторые полипептидные гормоны, а именно инсулин и глюкагон синтезируются в виде неактивных предшественников, полипептидные цепи которых длиннее цепей самих активных гормонов. Образование прогормона дает то преимущество, что, будучи неактивным, прогормон может запасаться в большом количестве в секреторных гранулах и быстро активироваться в ответ на соответствующий сигнал путем ферментативного расщепления. [c.1000]

    Полиеновые жирные кислоты — линолевая и линоленовая не синтезируются, а поступают с пищей (незаменимые). Остальные — полиненасыщенные — синтезируются из них. Особенно важен синтез арахидоновой кислоты, являющейся предшественником эйкозаноидов. Скорость синтеза жирных кислот регулируется кратковременными и долговременными механизмами контроля. Кратковременная регуляция осуществляется аллостерически на уровне аце-тил-КоА-карбоксилазы (цитрат — активатор, пальмитат и другие жирные кислоты — ингибитор). Долговременная регуляция осуществляется через синтез ферментов и их деградацию при участии гормонов. Инсулин активирует ацетил-КоА-карбоксилазу путем дефосфорилирования фермента (кратковременно) и способен вызывать долговременную индукцию синтеза фермента. Глюкагон и адреналин оказывают противоположное действие. [c.224]

    С помощью бактерий были получены с высоким выходом некоторые белки — продукты генов животных и-их вирусов. Так,,, были созданы штаммы Е. соИ, у которых 20% всего- клеточного белка составляли коровый антиген вируса гепатита В, гор -МОН роста человека или главный капсидный антиген вируса ящура. У одного из сконструированных штаммов В. suhtblis-последний составлял около 1% синтезируемого этой бактерией белка. Однако добиться экспрессии в бактериальных клетках генов некоторых белков животных или их вирусов совсем непросто, даже если эти гены сопряжены с сигналами инициации транскрипции и трансляции, которые обеспечивают в норме-высокий уровень экспрессии генов прокариот. Причины такой. неэффективной экспрессии не всегда ясны, но в некоторых случаях удалось установить, что протеазы бактерий быстро разрушают белки животных и вирусов. В подобных ситуациях можно повысить выход, применяя несодержащие протеаз мутанты.. При выработке проинсулина, предшественника инсулина, неко торая защита от протеаз обеспечивается тем, что полипептид, секретируется в периплазматическое пространство у клеточной стенки Е. oll. На N-конце молекулы препроинсулина находится последовательность гидрофобных аминокислот, с помощью которой (с одновременным ее отщеплением) осуществляется транспорт этой молекулы через мембрану в периплазм [c.319]

    В 50-е годы раскрыт один из наиболее сложных процессов — синтез холестерина, который является не только компонентом клеточных мембран и липоидов плазмы крови, но и предшественником в синтезе биологически активных стероидов, в том числе гормонов-анаболиков. За это открытие американский ученый К. Блок, немецкий ученый Ф. Линнен и английский ученый Дж. Корнфорд в 1961 г. были удостоены Нобелевской премии. В 1953 г. Дж. Уотсоном и Ф. Криком была определена структура нуклеиновых кислот, что положило начало расшифровке генетического кода. Эти авторы также были удостоены Нобелевской премии, ф. Сенджером расшифрована первичная структура гормона инсулина, что дало возможность синтезировать его и использовать в медицинской практике. В 1957 г. американский ученый Е.В. Сазерленд открыл универсальный передатчик действия гормонов и медиаторов на внутриклеточные процессы — [c.13]

    Впоследствии был испытан альтернативный метод синтезировали ген молекулы-предшественника, проинсулина, который и вводили в Е. oli. После очистки проинсулина его расш епля-ли трипсином и i -карбоксипептидазой и получали нативный инсулин. [c.337]

    В противоположность растениям в животных организмах фенольные соединения встречаются в очень незначительных количествах, и известно лишь небольшое число структурных типов таких фенолов. Наиболее важным фенолом является незаменимая аминокислота тирозин — универсальный компонент животных, растительных и бактериальных белков. У животных тирозин является предшественником меланина фармакологическое значение его состоит в том, что он вместе с фенилаланином является предшественником нейрогуморальных веществ — норадреналина и адреналина. Структура тирозина лежит в основе тиреоидиых гормонов, представляющих собой иодсодержащие фенолы и являющиеся продуктами деятельности щитовидной железы. Кроме того, тирозин встречается в ряде пептидных гормонов, например в инсулине, глюкагоне и в некоторых известных нейрогипофизарных гормонах, таких, как окситоцин и вазопрессин. Третий основной класс биологически активных фенолов — это гидроксилированные индоламины, например 5-ОТ, образующийся из триптофана. [c.358]

    Инсулин образуется из своего предшественника— проинсулина, который синтезируется в клетках ост ровков Лангерганса поджелудочной железы (см. Про-инсулин). [c.275]

chem21.info