Роль глюкозы и инсулина в углеводном обмене. Под влиянием инсулина глюкоза


Роль глюкозы и инсулина в углеводном обмене

Для обеспечения жизнедеятельности человеческому организму необходима энергия, которая вырабатывается за счёт сложного процесса превращения углеводов, в частности, глюкозы.

Основным источником поступления в кровь глюкозы является пища, которая содержит такие углеводы, как лактоза, сахароза, крахмал и другие.

Как правило, большая часть этих углеводов в процессе пищеварения превращается в глюкозу.

Глюкоза представляет собой простой сахар, состоящий из шести атомов углерода, и является важным энергетическим источником для всего организма и единственным – для головного мозга.

В свободном состоянии глюкоза практически не присутствует в пищевых продуктах, однако она входит в состав сахарозы и крахмала, из которых она выделяется в процессе пищеварения, давая организму необходимую энергию.

Входящие в состав пищи углеводы поставляют в организм около 60% энергии. Попав в желудочно-кишечный тракт, сложные углеводы расщепляются ферментами до простых молекул, называемых моносахаридами, которые затем всасываются в кровь. К моносахаридам относятся глюкоза, галактоза и фруктоза.

Из всех моносахаридов 80% принадлежит глюкозе, к тому же, большая часть галактозы и фруктозы в процессе пищеварения также превращаются в глюкозу. В итоге, все поступающие с пищей углеводы в ходе метаболизма расщепляются до глюкозы.

Глюкоза может служить источником энергии, только функционируя внутри клетки. Каждая клетка организма запасает энергию посредством метаболического окисления глюкозы до углекислого газа и воды.

Под воздействием этого процесса аккумулируемая в молекуле глюкозы энергия используется для образования энергоёмкого соединения – молекулы АТФ. Заключённая в молекуле АТФ энергия в последующем может использоваться организмом для осуществления химических внутриклеточных реакций.

Проникнув внутрь клеток, глюкоза берёт на себя центральную метаболическую роль, снабжая энергией многие биохимические реакции, необходимые для осуществления клеточных функций. Головной мозг, в отличие от других тканей, не способен синтезировать глюкозу и обеспечение его энергетических нужд полностью зависит от поступления глюкозы из крови.

Чтобы головной мозг функционировал нормально, уровень глюкозы в крови должен составлять не менее 3.0 ммоль/л. Однако, он не должен быть слишком высоким. Поскольку глюкоза является осмотически активным веществом, то при возрастании её уровня в крови в соответствии с законами осмоса из тканей в кровь начинает поступать вода, а почки начинают активно выводить глюкозу, если её уровень достигает 10 ммоль/л. В результате организм лишается глюкозы – главного источника энергии.

Поговорим о том, как же глюкоза проникает внутрь клеток. В результате пищеварения и сложного обмена углеводов в крови оказывается повышенное содержание глюкозы. Это служит своеобразным сигналом поджелудочной железе для выработки ферментов и гормонов.

Клетки поджелудочной железы имеют разное строение и выполняют разные функции. Существуют так называемые бета-клетки, которые синтезируют гормон инсулин. При повышении в крови уровня глюкозы, инсулин выбрасывается в кровь, открывая ей своеобразный шлюз для попадания внутрь клеток, где в последующем она сможет использоваться организмом, как источник энергии.

Но клетки организма нуждаются в постоянной энергетической подпитке, а не только во время еды, поэтому нормальная секреция инсулина у здорового человека идёт постоянно с показателем 0.5-1 в час.

Прием пищи стимулирует дополнительный выброс инсулина. Причём, это происходит практически моментально, что не приводит к повышению уровня сахара в крови. Между приемами пищи организму также необходим энергетический материал в виде глюкозы, и для этого печень резервирует необходимое количество углеводов, переработанных в гликоген, и по мере необходимости преобразует его обратно в глюкозу.

Одной из функций поджелудочной железы является регулирование уровня глюкозы в крови. Для этой цели в её клетках вырабатываются два гормона – антагониста: инсулин и глюкагон. То есть, если глюкозы в крови много – инсулин спешить провести её внутрь клеток, а энергетический излишек с помощью печени зарезервировать в гликоген.

Если глюкозы в крови мало – глюкагон блокирует выработку гликогена, начиная активно перерабатывать его обратно в глюкозу, чтобы обеспечить необходимое энергетические питание организма. Таким образом, благодаря нормальной работе поджелудочной железы, поддержание уровня глюкозы в крови подвергается строгому контролю.

Кроме регулирования углеводного обмена, роль инсулина в нормальной работе организма невозможно переоценить. Инсулин – единственный гормон, помогающий поступившей в кровь глюкозе пройти печёночные, жировые и мышечные клетки. Если инсулина недостаточно, то происходит, приблизительно, то же, что может произойти с автомобилем; для запуска процесса сгорания топлива необходимо включить зажигание, но оно не работает, и топливо заливает двигатель.

Функцию зажигания в организме выполняет именно инсулин. Если его не хватает, глюкоза не сгорает, не перерабатывается в энергию, а накапливается в крови и нарушает работу всего организма. Возникает инсулиновый голод среди сахарного изобилия.

Кроме того, инсулин помогает печени в образовании резервного энергетического запаса гликогена, играет огромную роль в обеспечении энергетического баланса организма, препятствуя переходу аминокислот в сахара, улучшает синтез белков, способствует преобразованию углеводов в жиры, то есть участвует практически во всех жизненно важных процессах.

Если же, после переработки глюкозы и отложения гликогена в печени, показатель уровня сахара в крови остаётся высоким, то его избыток жировые клетки превращают в жир, что, соответственно, приводит к ожирению.

Однако, при длительном, неправильно составленном рационе питания, с большим количеством «быстрых» углеводов и рафинированных продуктов, работа поджелудочной железы может нарушиться. Это грозит развитием такого серьёзного заболевания, как сахарный диабет. Если клетки не могут усвоить глюкозу, поступившую в кровь при переваривании пищи, то её уровень постепенно повышается.

Существует два типа сахарного диабета. I тип (инсулинозависимый) требует введения в организм инсулина извне, так как поджелудочная железа практически не вырабатывает инсулин. При II типе (инсулиннезависимом) вырабатывается достаточное количество инсулина, но он не работает должным образом. Поскольку клетки не получают необходимого количества энергии, возникает слабость и быстрое переутомление.

Если показатель уровня сахара в крови выше 10 ммоль/л, то к его выводу из организма подключаются почки. Поскольку увеличивается мочеотделение, появляется чувство постоянной жажды. В конце концов, организм переключается на другие виды горючего: жиры и белки. Но их расщепление происходит тоже под воздействием инсулина, которого катастрофически не хватает, поэтому жиры сгорают не до конца, что приводит к отравлению всего организма и может спровоцировать кому.

Поэтому, чтобы сохранить здоровье, необходимо тщательно следить за качеством рациона питания и, прежде всего, углеводов.

Существует такое понятие, как гликемический индекс (ГИ) продуктов. Он показывает, с какой скоростью в организме расщепляется и преобразуется в глюкозу тот или иной продукт. При этом, чем быстрее расщепление, тем выше гликемический индекс. Так называемые «быстрые» углеводы заставляют поджелудочную железу реагировать выбросом рекордного количества инсулина.

Употребление «быстрых» углеводов всегда ведёт к развитию ожирения, поскольку излишек глюкозы организм непременно отложит про запас в виде жира. Совсем другое дело обстоит с «медленными» углеводами, которые постепенно расщепляясь, позволяют инсулину равномерно проводить глюкозу в клетки, обеспечивая долговременное чувство сытости и необходимую энергетическую подпитку.

Таким образом, процесс обмена углеводов идёт по двум направлениям: преобразование пищевых веществ в энергию и перераспределение их избытка в энергетические резервы для подпитки между приемами пищи. Если энергетический резерв полон, а в крови ещё присутствует глюкоза, то организм её откладывает в виде жирового запаса. Поэтому очень важно подпитывать организм энергией, употребляя «медленные» углеводы.

При правильной работе пищеварительной системы и поджелудочной железы, показатель содержания сахара в крови всегда будет оставаться в норме, способствуя сохранению здоровья и активного образа жизни.

zdravnica.net

Влияние инсулина на содержание глюкозы в крови

Эксперимент заключается в исследовании содержания глюкозы в крови крыс с аллоксановым диабетом и в крови здорового животного при введении в организм инсулина. Инсулин – гормон эндокринной части поджелудочной железы – способствует усвоению глюкозы и переводу ее в гликоген. При недостатке этого гормона в организме развивается сахарный диабет, при котором концентрация глюкозы в крови возрастает (гипергликемия) и она появляется в моче (глюкозурия). Экспериментальный диабет вызывается инъекцией животному аллоксана (т.н. аллоксановый диабет)

На первом этапе эксперимента мы должны получить калибровочную кривую для определения концентрации глюкозы. Для этого в части 1 виртуального опыта мы будем измерять концентрацию вещества в растворах глюкозы, разбавленных различным количеством дистиллированной воды.

В верней части экрана выбираем Experiment и затем Insulin and diabetes – Part I. Появится оборудование для построения калибровочной кривой.

Рисунок 32. Оборудование для формирования калибровочной кривой. Программа «Инсулин и диабет. Часть 1.

Алгоритм действий:

Часть 1.

  1. С помощью мышки из банка пробирок слева переместите по очереди 5 пробирок в штатив.

  2. С помощью мышки заполните каждую пробирку раствором глюкозы, выбирая пипетку с глюкозой на полке с растворами (Glucose standard). Программа наполнит пробирки различным количеством глюкозы.

  3. Добавьте в первые четыре пробирки дистиллированной воды (Deionized Water).

  4. Нажмите «Mix» для перемешивания раствора в пробирках.

  5. Нажмите «Centrifuge» для центрифугирования содержимого пробирок.

  6. Нажмите «Remove Pellet» для удаления осадка.

  7. Добавьте в каждую пробирку цветной индикатор (Enzyme Color Reagent).

  8. Нажмите «Incubate» для начала инкубации содержимого пробирок.

  9. Открыть шторку спектрофотометра справа – нажмите «Set Up».

  10. Переместите первую пробирку в держатель спектрофотометра и нажмите кнопку «Analise». На экране появится красная точка, показывающая концентрацию глюкозы в первой пробирке. Зарегистрируйте результат в таблице, нажав Record Data

  11. Перенесите пробирку из спектрофотометра в контейнер для тары слева (Test Tube Washer).

  12. Повторите измерения концентрации раствора в остальных пробирках. Не забывайте после окончания каждого измерения выбрасывать пробирку в контейнер и нажимать «Record Data».

  13. Запишите результаты в протокол и постройте калибровочную кривую, нажав кнопку «Graph» под экраном спектрофотометра

Часть 2.

В верней части экрана выбираем Experiment и затем Insulin and diabetes – Part II. Появится оборудование для измерения концентрации глюкозы в крови. В этой модели, кроме спектрофотометра, контейнера для пробирок и штатива, имеются клетки с экспериментальными животными и шприцы с различными веществами (инсулин, физраствор, аллоксан), которые Вы будете вводить крысам.

Рисунок 33. Оборудование для измерения концентрации глюкозы в крови.

Программа «Инсулин и диабет. Часть 2.

Алгоритм действий:

1. Выберите с помощью мышки шприц с физиологическим раствором (Saline) и сделайте инъекцию контрольной крысе. Заберите пробирку из контейнера и перенесите ее к основанию хвоста контрольного животного для забора крови. Затем пометите пробирку с кровью в первую лунку штатива.

2. Выберите с помощью мышки шприц с аллоксаном (Alloxan), который блокирует выделение инсулина бета-клетками поджелудочной железы, и сделайте инъекцию экспериментальной крысе. Заберите пробирку из контейнера и перенесите ее к основанию хвоста экспериментального животного для забора крови. Затем пометите пробирку с кровью во вторую лунку штатива.

3. Сделайте инъекции инсулина (Insulin) обеим крысам и заберите их кровь так же, как и раньше. Пробирки с кровью пометите в 3-ю ( контроль) и 4-ю (опыт) лунки штатива.

  1. Нажмите (Obtain reagents) для перехода к процедуре анализа. Клетки с животными исчезнут, вместо них появятся необходимые растворы.

  2. Добавьте в каждую пробирку дистиллированную воду (Deionized wather), гидроксид бария (Barium hydroxide) и гепарин (Heparin).

  3. Нажмите Mix для перемешивания раствора в пробирках.

  4. Нажмите Centrifuge для центрифугирования содержимого пробирок.

  5. Нажмите Remuve Pellet для удаления осадка.

  6. Добавьте цветного индикатора (Enzyme Color Reagent)

  7. Нажмите Incubate для начала инкубации содержимого пробирок.

  8. Открыть шторку спектрофотометра справа – нажмите Set Up.

  9. Нажмите «Graph Glucose Standard» под экраном спектрофотометра для появления калибровочной кривой.

  10. Переместите первую пробирку в держатель спектрофотометра и нажмите кнопку «Analise». На экране появится горизонтальная линия, показывающая показатель экстинции прибора. С помощью мышки переместите вертикальную линию в точку пересечения горизонтали с калибровочной кривой. Эта точка соответствует концентрации глюкозы в первой пробирке. Зарегистрируйте результат в таблице, нажав Record Data

  11. Перенесите пробирку из спектрофотометра в контейнер для тары слева (Test Tube Washer).

  12. Повторите измерения концентрации раствора в остальных пробирках (как в пункте 13). Не забывайте после окончания каждого измерения выбрасывать пробирку в контейнер и нажимать Record Data.

  13. Запишите результаты в протокол и сделайте выводы.

Таблица 3. Влияние инсулина на концентрацию глюкозы в крови.

Пробирка №

Показатель

экстинции

(Optical Density)

Концентрация глюкозы (мг/децилитр

Инсулин

Физраствор

Аллоксан

1

2

3

4

Попробуйте ответить на следующие вопросы:

1. Чем отличается реакция на инсулин у контрольного и большого диабетом животного?

2. Каков механизм действия инсулина?

studfiles.net

Роль глюкозы и инсулина в углеводном обмене

Для обеспечения жизнедеятельности человеческому организму необходима энергия, которая вырабатывается за счёт сложного процесса превращения углеводов, в частности, глюкозы.

Основным источником поступления в кровь глюкозы является пища, которая содержит такие углеводы, как лактоза, сахароза, крахмал и другие.

Как правило, большая часть этих углеводов в процессе пищеварения превращается в глюкозу.

Глюкоза представляет собой простой сахар, состоящий из шести атомов углерода, и является важным энергетическим источником для всего организма и единственным – для головного мозга.

В свободном состоянии глюкоза практически не присутствует в пищевых продуктах, однако она входит в состав сахарозы и крахмала, из которых она выделяется в процессе пищеварения, давая организму необходимую энергию.

Входящие в состав пищи углеводы поставляют в организм около 60% энергии. Попав в желудочно-кишечный тракт, сложные углеводы расщепляются ферментами до простых молекул, называемых моносахаридами, которые затем всасываются в кровь. К моносахаридам относятся глюкоза, галактоза и фруктоза.

Из всех моносахаридов 80% принадлежит глюкозе, к тому же, большая часть галактозы и фруктозы в процессе пищеварения также превращаются в глюкозу. В итоге, все поступающие с пищей углеводы в ходе метаболизма расщепляются до глюкозы.

Глюкоза может служить источником энергии, только функционируя внутри клетки. Каждая клетка организма запасает энергию посредством метаболического окисления глюкозы до углекислого газа и воды.

Под воздействием этого процесса аккумулируемая в молекуле глюкозы энергия используется для образования энергоёмкого соединения – молекулы АТФ. Заключённая в молекуле АТФ энергия в последующем может использоваться организмом для осуществления химических внутриклеточных реакций.

Проникнув внутрь клеток, глюкоза берёт на себя центральную метаболическую роль, снабжая энергией многие биохимические реакции, необходимые для осуществления клеточных функций. Головной мозг, в отличие от других тканей, не способен синтезировать глюкозу и обеспечение его энергетических нужд полностью зависит от поступления глюкозы из крови.

Чтобы головной мозг функционировал нормально, уровень глюкозы в крови должен составлять не менее 3.0 ммоль/л. Однако, он не должен быть слишком высоким. Поскольку глюкоза является осмотически активным веществом, то при возрастании её уровня в крови в соответствии с законами осмоса из тканей в кровь начинает поступать вода, а почки начинают активно выводить глюкозу, если её уровень достигает 10 ммоль/л. В результате организм лишается глюкозы – главного источника энергии.

Поговорим о том, как же глюкоза проникает внутрь клеток. В результате пищеварения и сложного обмена углеводов в крови оказывается повышенное содержание глюкозы. Это служит своеобразным сигналом поджелудочной железе для выработки ферментов и гормонов.

Клетки поджелудочной железы имеют разное строение и выполняют разные функции. Существуют так называемые бета-клетки, которые синтезируют гормон инсулин. При повышении в крови уровня глюкозы, инсулин выбрасывается в кровь, открывая ей своеобразный шлюз для попадания внутрь клеток, где в последующем она сможет использоваться организмом, как источник энергии.

Но клетки организма нуждаются в постоянной энергетической подпитке, а не только во время еды, поэтому нормальная секреция инсулина у здорового человека идёт постоянно с показателем 0.5-1 в час.

Прием пищи стимулирует дополнительный выброс инсулина. Причём, это происходит практически моментально, что не приводит к повышению уровня сахара в крови. Между приемами пищи организму также необходим энергетический материал в виде глюкозы, и для этого печень резервирует необходимое количество углеводов, переработанных в гликоген, и по мере необходимости преобразует его обратно в глюкозу.

Одной из функций поджелудочной железы является регулирование уровня глюкозы в крови. Для этой цели в её клетках вырабатываются два гормона – антагониста: инсулин и глюкагон. То есть, если глюкозы в крови много – инсулин спешить провести её внутрь клеток, а энергетический излишек с помощью печени зарезервировать в гликоген.

Если глюкозы в крови мало – глюкагон блокирует выработку гликогена, начиная активно перерабатывать его обратно в глюкозу, чтобы обеспечить необходимое энергетические питание организма. Таким образом, благодаря нормальной работе поджелудочной железы, поддержание уровня глюкозы в крови подвергается строгому контролю.

Кроме регулирования углеводного обмена, роль инсулина в нормальной работе организма невозможно переоценить. Инсулин – единственный гормон, помогающий поступившей в кровь глюкозе пройти печёночные, жировые и мышечные клетки. Если инсулина недостаточно, то происходит, приблизительно, то же, что может произойти с автомобилем; для запуска процесса сгорания топлива необходимо включить зажигание, но оно не работает, и топливо заливает двигатель.

Функцию зажигания в организме выполняет именно инсулин. Если его не хватает, глюкоза не сгорает, не перерабатывается в энергию, а накапливается в крови и нарушает работу всего организма. Возникает инсулиновый голод среди сахарного изобилия.

Кроме того, инсулин помогает печени в образовании резервного энергетического запаса гликогена, играет огромную роль в обеспечении энергетического баланса организма, препятствуя переходу аминокислот в сахара, улучшает синтез белков, способствует преобразованию углеводов в жиры, то есть участвует практически во всех жизненно важных процессах.

Если же, после переработки глюкозы и отложения гликогена в печени, показатель уровня сахара в крови остаётся высоким, то его избыток жировые клетки превращают в жир, что, соответственно, приводит к ожирению.

Однако, при длительном, неправильно составленном рационе питания, с большим количеством «быстрых» углеводов и рафинированных продуктов, работа поджелудочной железы может нарушиться. Это грозит развитием такого серьёзного заболевания, как сахарный диабет. Если клетки не могут усвоить глюкозу, поступившую в кровь при переваривании пищи, то её уровень постепенно повышается.

Существует два типа сахарного диабета. I тип (инсулинозависимый) требует введения в организм инсулина извне, так как поджелудочная железа практически не вырабатывает инсулин. При II типе (инсулиннезависимом) вырабатывается достаточное количество инсулина, но он не работает должным образом. Поскольку клетки не получают необходимого количества энергии, возникает слабость и быстрое переутомление.

Если показатель уровня сахара в крови выше 10 ммоль/л, то к его выводу из организма подключаются почки. Поскольку увеличивается мочеотделение, появляется чувство постоянной жажды. В конце концов, организм переключается на другие виды горючего: жиры и белки. Но их расщепление происходит тоже под воздействием инсулина, которого катастрофически не хватает, поэтому жиры сгорают не до конца, что приводит к отравлению всего организма и может спровоцировать кому.

Поэтому, чтобы сохранить здоровье, необходимо тщательно следить за качеством рациона питания и, прежде всего, углеводов.

Существует такое понятие, как гликемический индекс (ГИ) продуктов. Он показывает, с какой скоростью в организме расщепляется и преобразуется в глюкозу тот или иной продукт. При этом, чем быстрее расщепление, тем выше гликемический индекс. Так называемые «быстрые» углеводы заставляют поджелудочную железу реагировать выбросом рекордного количества инсулина.

Употребление «быстрых» углеводов всегда ведёт к развитию ожирения, поскольку излишек глюкозы организм непременно отложит про запас в виде жира. Совсем другое дело обстоит с «медленными» углеводами, которые постепенно расщепляясь, позволяют инсулину равномерно проводить глюкозу в клетки, обеспечивая долговременное чувство сытости и необходимую энергетическую подпитку.

Таким образом, процесс обмена углеводов идёт по двум направлениям: преобразование пищевых веществ в энергию и перераспределение их избытка в энергетические резервы для подпитки между приемами пищи. Если энергетический резерв полон, а в крови ещё присутствует глюкоза, то организм её откладывает в виде жирового запаса. Поэтому очень важно подпитывать организм энергией, употребляя «медленные» углеводы.

При правильной работе пищеварительной системы и поджелудочной железы, показатель содержания сахара в крови всегда будет оставаться в норме, способствуя сохранению здоровья и активного образа жизни.

zdravnica.net

Инсулин. Часть II. Применение инсулина в бодибилдинге и пауэрлифтинге.

Влияние на обмен углеводов.

  Действие на обмен глюкозы в печени. Печень - это один из наиболее важных органов тела, запасающих глюкозу. Глюкоза может свободно диффундировать в клетки печени и выходить из них, когда её содержание в крови снижается. В клетках печени глюкоза под влиянием инсулина превращается в гликоген, и её содержание в кови снижается. Один из главных эффектов инсулина состоит в активации фермента глюкокиназы, катализирующей фосфорилирование глюкозы, которая поступает в клетки печени. Инсулин активирует и другие ферменты, в том числе фосфофруктокиназу и гликогенсинтазу, катализирующую полимеризацию фосфорилированной глюкозы в гликоген. Наконец инсулин ингибирует ферменты, расщепляющие гликоген (фосфорилазы), благодаря чему высокий уровень инсулина способствует консервации гликогена. Следует также отметить и тот факт, что инсулин ингибирует глюконеогенез (синтез глюкозы из преимущественно аминокислот) в печени. Это происходит за счёт ингибирования ряда ферментов и за счёт повышения уровня внутриклеточного регулятора фруктозо-2,6-бисфосфата.

  За счёт быстрого синтеза гликогена и подавления гликогенолиза концентрация глюкозы в крови, повышающаяся после приёма пищи, быстро возвращается к нормальному уровню. В результате устраняется основной стимул секреции инсулина, и содержание последнего в крови также нормализуется.

  Когда организму требуется энергия в промежутках между приёмами пищи, гликоген опять превращается в глюкозу. Концентрация инсулина в крови в этот период очень мала, поэтому фосфорилаза находится в активном состоянии и превращает гликоген в глюкозофосфат, который дефосфорилируется глюкозофосфатазой. Образующаяся при этом глюкоза может свободно выходить из клетки путём диффузии. Таким образом поддерживается постоянный уровень глюкозы в крови между приёмами пищи. При нормальном питании около 60% глюкозы, потребляемой человеком с пищей, временно запасается в печени, с тем, чтобы быстро высвобождаться за счёт расщепления гликогена.

  Действие на обмен глюкозы в мышечных клетках. При низкомсодержании инсулина в крови мышечные клетки в норме не проницаемы для глюкозы и всю необходимую энергию получают за счёт окисления жирных кислот. Увеличение концентрации инсулина, вызванное повышением уровня глюкозы в крови после приема пищи, делает мышечные клетки проницаемыми для глюкозы, через увеличение GLUT-4 (GLUT - GLUcose Transporter - переносчик для глюкозы, встроенный в мембрану клетки), которая используется затем в качестве источника энергии. Однако при очень высокой мышечной активности (тренировка) мембраны клеток становятся проницаемыми для глюкозы и в отсутствии инсулина. В этом случае потребность работающей мышцы в глюкозе как энергетическом субстрате удовлетворяется даже при базальном уровне инсулина. Детально этот механизм ещё не изучен. Когда мышца находится в неактивном состоянии, в ней сразу после приёма пищи, т. е. при высоких концентрациях инсулина и глюкозы, тоже образуется и сохраняется небольшое количество гликогена. При острой необходимости этот гликоген опять превращается в глюкозу, которая используется мышечными клетками. Как правило, глюкоза не выделяется обратно в кровь и не играет никакой роли в регуляции уровня сахара в крови после приёма пищи.

  Обмен глюкозы в нервных клетках. Клетки ЦНС свою довльно высокую потребность в энергии почти целиком покрывают за счёт глюкозы, причём её потребление не зависит от инсулина. Он не влияет на проницаемость мембран для глюкозы и не активирует ферментные системы этих клеток. Тот факт, что ЦНС получает необходимую ей энергию только за счёт окисления глюкозы, позваляет понять, почему снижение концентрации последней в крови ниже критического уровня (0,5-0,2 г/л) может привести к гипогликемическому шоку с помутнением сознания или даже комой. Большинство других клеток тела отвечает на инсулин подобно мышечным клеткам.   Важно отметить ещё и следующий факт. В клетках инсулинчувствительных тканей инсулин стимулирует протекание реакций пентозофосфатного пути, что в конечном итоге способствует пролиферации (росту и размножению) клеток.

  Теперь посмотрите на эту схемку. Ничего особенного в ней нет, за исключением того, что про неё редко кто вспоминает, а зря. Здесь показано как превращается (в норме) поступившая глюкоза в организме человека под действием инсулина.

Влияние на жировой обмен.

  Печень может запасать под действием инсулина лишь ограниченное количество гликогена. Излишки поступившей в печень глюкозы подвергаются фосфорилированию и таким путём удерживаются в клетке, но затем превращаются не в гликоген, а в жир. Это превращение в жир также является результатом прямого действия инсулина, а образующиеся при этом жирные кислоты транспортируются кровью в жировую ткань, где они поглащаются клетками, в которых и хранятся. В крови жиры находятся в составе липопротеинов, играющих важную роль в развитии атеросклероза и связанного с ним риска эмболии и инфаркта.

  Действие инсулина клетки жировой ткани в принципе сходно с его действием на клетки печени, однако в печени образование жирных кислот идёт более интенсивно, поэтому они переносятся из неё в жировую ткань описанным выше путём. В клетках жирные кислоты хранятся в форме триглицеридов.

  Под действием инсулина распад триглицеридов в жировой ткани снижается, за счёт игибирования гормон-чувствительной липазы. Также инсулин активирует синтез жирных кислот жировыми клетками и участвует в обеспечении их глицеролом, необходимым для синтеза триглицеридов. Всё это в конечном итоге способствут накоплению жира.

   Описанное выше влияние инсулина на жировой обмен обратимо, и при низкой его концентрации триглицериды опять расщепляются на глицерол и жирные кислоты. Связано это с тем, что инсулин ингибирует чувствительную к гормонам липазу и при снижении его концентрации липолиз активируется. Свободные жирные кислоты, образующиеся при гидролизе триглицеридов, поступают одновременно в кровь и используются в качестве источника энергии в других тканях. Окисление свободных жирных кислот возможно во всех клетках тела, кроме нервных. Большая часть жирных кислот, освобождающихся при недостатке инсулина из жировых депо, опять поглощается печенью. Клетки печени способны синтезировать триглицериды даже в отсутствии инсулина, поэтому при его недостатке освобождающиеся из депо жирные кислоты накапливаются в печени в виде триглицеридов. Именно по этой причине у больных с дефицитом инсулина, т. е. при сахарном диабете, несмотря на общее похудание, развивается ожирение печени.

   Высокое содержание в печени жирных кислот приводит к образованию активированной уксусной кислоты (ацетил-КоА). Поскольку печень не может использовать весь ацетил-КоА в качестве источника энергии, он превращается в ацетоуксусную кислоту, которая выделяется в кровь. При достаточно высокой концентрации инсулина периферические клетки способны превращать ацетоуксусныю кислоту опять в ацетил-КоА, который служит им источником энергии. Но в отсутствии инсулина этого превращения не происходит, и некоторая часть ацетоуксусной кислоты превращается в В-гидроксимаслянную кислоту и ацетон. Эти три метаболита называются кетоновыми телами, а возникающие при этом нарушения обмена - кетозом. Вследствие кетоза у больного в состоянии диабетической комы выдыхаемый воздух пахнет ацетоном, а анализ крови выявляет метаболический ацидоз.

Влияние на белковый обмен.

  Получаемые с пищей белки расщепляются до аминокислот, котрые служат затем субстратом для синтеза собственных белков тела. Этот процесс протекает оптимально только при условии действия инсулина. Инсулин обеспечивает активный транспорт в клетки многих, хотя и не всех, аминокислот. Сходным действием обладает гормон роста, но он активирует поглощение других групп аминокислот. Повышение концентрации аминокислот в клетках после приёма пищи приводит к стимуляции синтеза белка на рибосомах. Инсулин стимулирует синтез белка и косвенным путём, повышая скорость транскрипции ДНК в ядре и тем самым образование РНК. В сумме все эти эффекты инсулина способствуют синтезу белка. В последнее время также установлен его антикатаболический эффект. Соответственно отсутствие инсулина даёт противоположный эффект и приводит к истощению белковых ресурсов организма. В этом случае аминокислоты используются либо непосредственно в качестве энергетического субстрата, либо в процессе глюконеогенеза. Поскольку для синтеза белка инсулин имеет почти такое же важное значение, как гормон роста, человек может нормально расти только при оптимальном соотношении обоих гормонов.

Влияние на пролиферацию клеток.

  Инсулин стимулирует пролиферацию ряда клеток в культуре. Возможно он участвует и в регуляции роста in vivo. В таких клетках инсулин усиливает способность факторов роста, ПГF2, вазопрессина и аналогов cAMP активировать размножение клеток. Инсулин поддерживает рост и репликацию многих клеток эпителиального происхождения, в том числе гепатоцитов, клеток гепатомы, клеток опухоли коры надпочечников и клеток карциномы молочной железы. Биохимический механизм влияния инсулина на репликацию клеток не выяснен, но предполагают, что он основан на анаболическом действии гормона. Возможно, здесь играет роль влияние на поглощение глюкозы, фосфата, нейтральных аминокислот и катионов. Гормон может стимулировать репликацию, используя свою способность активировать или инактивировать ферменты путём регуляции скорости и степени фосфорилирования белков или регулируя синтез ферментов.

  Инсулиновый рецептор, как и рецептор многих факторов роста, обладает тирозинкиназной активностью. Помните, несколько выше я писал об этом. Дело в том, что по крайней мере 10 онкогенных продуктов (многие из которых, вероятно участвуют в стимулировании репликации злокачественных клеток) также представляют собой тирозинкиназы. Клетки млекопитающих содержат аналоги этих онкогенов - протоонкогены. Поясню проще - есть все основания предполагать, что инсулин стимулирут пролиферацию раковых клеток, и, возможно, в высоких дозах выступает в качестве проонкогена.  Часть I. Часть III.

antidoping-center.narod.ru