5.7. Получение инсулина на основе методов генетической инженерии. Схема синтез инсулина


Инсулин. Строение, синтез и секреция

Инсулин - полипептид, состоящий из двух полипептидных цепей. Цепь А содержит 21 аминокислотный остаток, цепь В - 30 аминокислотных остатков. Обе цепи соединены

между собой двумя дисульфидными мостиками (рис. 11-23). Инсулин может существовать в нескольких формах: мономера, димера и гек-самера. Гексамерная структура инсулина стабилизируется ионами цинка, который связывается остатками Гис в положении 10 В-цепи всех 6 субъединиц.

Молекула инсулина содержит также внутримолекулярный дисульфидный мостик, соединяющий шестой и одиннадцатый остатки в А-цепи. Инсулины некоторых животных имеют значительное сходство по первичной структуре с инсулином человека.

Бычий инсулин отличается от инсулина человека по трём аминокислотным остаткам, а инсулин свиньи отличается только на одну аминокислоту, которая представлена алани-ном вместо треонина на карбоксильном конце В-цепи.

Рис. 11-23. Структура инсулина человека.А. Первичная структура инсулина. Б. Модель третичной структуры инсулина (мономер): 1 - А-цепь; 2 - В-цепь; 3 - участок связывания с рецептором.

В обеих цепях во многих положениях встречаются замены, не оказывающие влияния на биологическую активность гормона. Наиболее часто эти замены обнаруживаются в положениях 8, 9 и 10 цепи А.

В то же время в положениях дисульфидных связей, остатков гидрофобных аминокислот в С-концевых участках В-цепи и С- и N-кон-цевых остатков А-цепи замены встречаются очень редко, что свидетельствует о важности этих участков для проявления биологической активности инсулина. Использование химических модификаций и замен аминокислот в этих участках позволили установить структуру активного центра инсулина, в формировании которого принимают участие остатки фенила-ланина В-цепи в положениях 24 и 25 и N- и С-концевые остатки цепи А.

Биосинтез инсулинавключает образование двух неактивных предшественников, препроинсулина и проинсулина, которые в результате последовательного протеолиза превращаются в активный гормон. Биосинтез препроинсулина начинается с образования сигнального пептида на полирибосомах, связанных с ЭР. Сигналыный пептид проникает в просвет ЭР и направляет поступление в просвет ЭР растущей полипептидной цепи. После окончания синтеза препроинсулина сигнальный пептид, включающий 24 аминокислотных остатка, отщепляется (рис. 11-24).

Проинсулин (86 аминокислотных остатков) поступает в аппарат Гольджи, где под действием специфических протеаз расщепляется в нескольких участках с образованием инсулина (51 аминокислотный остаток) и С-пептида, состоящего из 31 аминокислотного остатка.

Рис. 11-24. Схема биосинтеза инсулина вβ-клетках островков Лангерханса.ЭР - эндоплазматический ретикулум. 1 - образование сигнального пептида; 2 - синтез препроинсулина; 3 - отщепление сигнального пептида; 4 - транспорт проинсулина в аппарат Гольджи; 5 - превращение проинсулина в инсулин и С-пептид и включение инсулина и С-пептида в секреторные гранулы; 6 - секреция инсулина и С-пептида.

Инсулин и С-пептид в эквимолярных количествах включаются в секреторные гранулы. В гранулах инсулин соединяется с цинком, образуя димеры и гексамеры. Зрелые гранулы сливаются с плазматической мембраной, и инсулин и С-пептид секретируются во внеклеточную жидкость в результате экзоцитоза. После секреции в кровь олигомеры инсулина распадаются. T1/2 инсулина в плазме крови составляет 3-10 мин, С-пептида - около 30 мин.

Разрушение инсулина происходит под действием фермента инсулиназы в основном в печени и в меньшей степени в почках.

Регуляция синтеза и секреции инсулина.Глюкоза - главный регулятор секреции инсулина, а β-клетки - наиболее важные глюкозо-чувстви-тельные клетки в организме. Глюкоза регулирует экспрессию гена инсулина, а также генов других белков, участвующих в обмене основных энергоносителей. Действие глюкозы на скорость экспрессии генов может быть прямым, когда глюкоза непосредственно взаимодействует с транскрипционными факторами, или вторичным, через влияние на секрецию инсулина и глюкагона. При стимуляции глюкозой инсулин быстро освобождается из секреторных гранул, что сопровождается активацией транскрипции мРНК инсулина.

Синтез и секреция инсулина не являются строго сопряжёнными процессами. Синтез гормона стимулируется глюкозой, а секреция его является Са2+-зависимым процессом и при дефиците Са2+ снижается даже в условиях высокой концентрации глюкозы, которая стимулирует синтез инсулина.

Потребление глюкозы β-клетками происходит в основном при участии ГЛЮТ-1 и ГЛЮТ-2, и концентрация глюкозы в клетках быстро уравнивается с концентрацией глюкозы в крови. В β-клетках глюкоза превращается в глюкозо-6-фосфат глюкокиназой, имеющей высокую Кт, вследствие чего скорость её фосфорилирования почти линейно зависит от концентрации глюкозы в крови. Фермент глюкокиназа - один из важнейших компонентов глюкозо-чувстви-тельного аппарата β-клеток, в который, помимо глюкозы, вероятно, входят промежуточные продукты метаболизма глюкозы, цитратного цикла и, возможно, АТФ. Мутации глюкокиназы приводят к развитию одной из форм сахарного диабета.

На секрецию инсулина влияют другие гормоны. Адреналин через α2-рецепторы тормозит секрецию инсулина даже на фоне стимуляции глюкозой, β-адренергические агонисты её стимулируют, вероятно, в результате повышения концентрации цАМФ. Этот механизм, полагают, лежит в основе действия гормонов ЖКТ, таких как секретин, холецистокинин и желудочный ингибирующий пептид (GIP), которые повышают секрецию инсулина. Высокие концентрации гормона роста, кортизола, эстрогенов также стимулируют секрецию инсулина.

Похожие статьи:

poznayka.org

5.7. Получение инсулина на основе методов генетической инженерии

Инсулин — гормон поджелудочной железы, регулирующц| углеводный обмен и поддерживающий нормальный уровень сазд pa в крови. Недостаток этого гормона в организме приводит.) одному из тяжелейших заболеваний — сахарному диабету, коте» рый как причина смерти стоит на третьем месте после сердечн'* сосудистых заболеваний и рака. Инсулин — небольшой глобуля| ный белок, содержащий 51 аминокислотный остаток и состой щий из двух полипептидных цепей, связанных между собой двум дисульфидными мостиками. Синтезируется он в виде одноцепс чечного предшественника — препроинсулина, содержащего koi, цевой сигнальный пептид (23 аминокислотных остатка) и 35-зве£ ный соединительный пептид (С-пептид). При удалении сигналг ного пептида в клетке образуется проинсулин из 86 аминокислот ных остатков, в котором А и В-цепи инсулина соединены C-nei тидом, обеспечивающим им необходимую ориентацию при 3$ мыкании дисульфидных связей. После протеолитического отщег ления С-пептида образуется инсулин.

Известно несколько форм сахарного диабета. Самая тяжел» форма, для лечения которой больному необходим инсулин (инс линзависимая форма заболевания), вызвана избирательной гиб лью клеток, синтезирующих этот гормон (клетки островков Ла| герганса в поджелудочной железе). Форма сахарного диабета, д» лечения которой инсулин не требуется, распространена чаще, ней удается справляться с помощью соответствующих диет и ре:> ма. Обычно поджелудочная железа крупного рогатого скота и свш- не используется в мясной и консервной промышленности и поста ляется в вагонах-рефрижераторах на фармацевтические предпрй тия, где проводят экстракцию гормона. Для получения 100 г кр! таллического инсулина необходимо 800—1000 кг исходного сырЙ

Синтез обеих цепей и соединение их дисудьфидными связями для получения инсулина были проведены в 1963 и 1965 гг. тремя коллективами исследователей в США, Китае и ФРГ. В 1980 г. дат­ская компания «Ново индастри» разработала метод превращения инсулина свиньи в инсулин человека путем замещения 30-го ос­татка аланина в цепи В на остаток треонина. Оба инсулина не раз­личались по активности и времени действия.

Работы по генно-инженерному получению инсулина начались около 20 лет назад. В 1978 г. появилось сообщение о получении штамма кишечной палочки, продуцирующего крысиный проинсулин (США). В этом же году были синтезированы отдельные цепи человеческого инсулина посредством экспрессии их синтетических генов в клет­ках Е. coli (рис. 5.11). Каждый из полученных синтетических генов подстраивался к З'-концу гена фермента (3-галактозидазы и вводил­ся в векторную плазмиду (pBR322). Клетки Е. coli, трансформиро­ванные такими рекомбинантными плазмидами, производили гиб­ридные (химерные) белки, состоящие из фрагмента р-галактози- дазы и А или В пептида инсулина, присоединенного к ней через остаток метионина. При обработке химерного белка бромцианом пептид освобождается. Однако замыкание дисульфидных мостиков между образованными цепями инсулина происходило с трудом.

В 1981 г. синтезирован ген-аналог проинсулина — мини-С-про- инсулин, в котором 35-звенный С-пептид был заменен на сег­мент из шести аминокислот: арг-арг-гли-сер-лиз-арг и показана его экспрессия в Е. coli.

В 1980 г. У.Гилберт с сотрудниками выделили мРНК инсулина из опухоли Р-клеток поджелудочной железы крысы и с помощью обрат­ной транскриптазы получили с нее кДНК. Полученную кДНК встрои­ли в плазмиду pBR322 Е. coli, в среднюю часть гена пенициллиназы. Рекомбинантная плазмида содержала информацию о структуре про­инсулина. В результате трансляции мРНК в клетках синтезировался гибридный белок, содержащий последовательности пенициллина­зы и проинсулина, который выщепляли из такого белка трипсином.

В 1978 г. сотрудниками Института биоорганической химии под руководством акад. Ю. А. Овчинникова был осуществлен синтез двух структурных генов, кодирующих синтез нейропептидов: лейцин- энкефалина и брадикинина. Синтезированный ген лейцин-энкефа- лина имел два «липких» конца:

5- 3'

«липкий» ААТХц AT ГТАТ Г Г Т Г Г Ц Т Т ТЦ Т Г ТА А <'™пкий>>™ конец EcoRI ■ ■ ?ТАЦАТАццАцц?ааа?аЦАТТЦТАГ ®amHI

Полученный синтетический ген был встроен вместе с фрагмен­том природной ДНК, содержащим промотор и проксимальную часть гена белка Р-галактозидазы кишечной палочки Е. coli, в плазмиду

-Ген проинсулина

СООН

CP - галактозидазный S гибридный белок S

ИИОЕ!

JcNBr

Проинсулин

Ферментативное расщепление

А-цепь

Рис. 5.11. Схема синтеза инсулина

вектор pBR322 и обработан смесью рестриктаз — EcoRI и BamHI Полученная рекомбинантная плазмида рЕк была трансформиро; вана в клетки Е. coli. В результате экспрессии встроенного ген бактерия начала продуцировать гибридный (химерный) белок, cqf держащий на N-конце участок Р-галакгозидазы, а на С-конце последовательность нейропептида. С помощью бромциана химер ный белок расщепляли in vitro и получали активный лейцин-энк4 фалин. На рис. 5.12 представлены схема клонирования синтетиче^ кого гена лейцин-энкефалина и его экспрессия в клетках кише<|| ной палочки.

иАналогичным путем был синтезирован соматостатин — гор­мон гипоталамуса (рис. 5.13). Молекула соматостатина состоит из 14 аминокислотных остатков. Соматостатин подавляет выделение инсу­лина и гормона роста человека. В Национальном медицинском цен­тре «Хоуп» (Калифорния) был осуществлен химико-ферментатив­ный синтез гена длиной в 42 нуклеотида, способного кодировать соматостатин. Участок ДНК, кодирующий гормон соматостатин, получен путем соединения тринуклеотидов. Из 52 н. п. синтетического гена 42 пары составляли структурный ген гормона, а остальные слу­жили для присоединения синтетического гена к плазмиде pBR322,

h3N -Тир- Гли • Гли • Фен-Лей(ОН)-Лейцин-энкефалин

Химико-ферментативный синтез гена Мет^ Тир Гли Гли^ Фен Лей Stop

-3'

ДАТТЦДТГТАТГГТГГЦТТТЦТГТАА ■ •• •• •••• ••• • •«« • •• ••

«липкии» конец

/ ГТАЦАТАЦЦАЦЦГАААГАЦАТ [ГЦТАГ, .

«липкий» конец BamHI

/V

(р-галактозидаза)

•он >

\ Ч

Рекомбинантная плазмида

1. Транс­формация в E.coli

EcoRI EcoRI

Плазмида

Н г, ^

BamHI Vя Р / I

74

t

Э Т4 ДНК-лигаза

2. Синтез белка in viv

o

Фрагмент

h3N р^галаето"- Мет-ТирТлиТли-Фен-Лей(ОН) зидазы

Гибридный белок

/ Расщепление У BrCN in vitro

Фрагменты Активный лейцин-энкефалин р-галактозидазы

Рис. 5.12. Схема синтеза гибридного и активного лейцин-энкефалин

а

и

о

<4 li.

i f

83-

X ж и—о I

яа также к сегменту лактозного оперона (lac) из генома Е. coli или к (3-галактозидазному гену. Такую синтетическую чужеродную ДНК встраивали непосредственно за бактериальным геномом (или внут­ри его) после расщепления ДНК рестрикционными эндонуклеаза- ми с образованием в результате трансляции гибридного белка.

studfiles.net

5.7. Получение инсулина на основе методов генетической инженерии

Инсулин — гормон поджелудочной железы, регулирующц| углеводный обмен и поддерживающий нормальный уровень caxj pa в крови. Недостаток этого гормона в организме приводит.) одному из тяжелейших заболеваний — сахарному диабету, коте» рый как причина смерти стоит на третьем месте после сердечн'* сосудистых заболеваний и рака. Инсулин — небольшой глобуля| ный белок, содержащий 51 аминокислотный остаток и состой щий из двух полипептидных цепей, связанных между собой двум дисульфидными мостиками. Синтезируется он в виде одноцепс чечного предшественника — препроинсулина, содержащего koi, цевой сигнальный пептид (23 аминокислотных остатка) и 35-зве£ ный соединительный пептид (С-пептид). При удалении сигналг ного пептида в клетке образуется проинсулин из 86 аминокислот ных остатков, в котором А и В-цепи инсулина соединены C-nei тидом, обеспечивающим им необходимую ориентацию при 3$ мыкании дисульфидных связей. После протеолитического отщег ления С-пептида образуется инсулин.

Известно несколько форм сахарного диабета. Самая тяжел» форма, для лечения которой больному необходим инсулин (инс линзависимая форма заболевания), вызвана избирательной гиб лью клеток, синтезирующих этот гормон (клетки островков Ла| герганса в поджелудочной железе). Форма сахарного диабета, д» лечения которой инсулин не требуется, распространена чаще, ней удается справляться с помощью соответствующих диет и ре:> ма. Обычно поджелудочная железа крупного рогатого скота и свш- не используется в мясной и консервной промышленности и поста ляется в вагонах-рефрижераторах на фармацевтические предпрй тия, где проводят экстракцию гормона. Для получения 100 г кр! таллического инсулина необходимо 800—1000 кг исходного сырй

Синтез обеих цепей и соединение их дисульфидными связями для получения инсулина были проведены в 1963 и 1965 гг. тремя коллективами исследователей в США, Китае и ФРГ. В 1980 г. дат­ская компания «Ново индастри» разработала метод превращения инсулина свиньи в инсулин человека путем замещения 30-го ос­татка аланина в цепи В на остаток треонина. Оба инсулина не раз­личались по активности и времени действия.

Работы по генно-инженерному получению инсулина начались около 20 лет назад. В 1978 г. появилось сообщение о получении штамма кишечной палочки, продуцирующего крысиный проинсулин (США). В этом же году были синтезированы отдельные цепи человеческого инсулина посредством экспрессии их синтетических генов в клет­ках Е. coli (рис. 5.11). Каждый из полученных синтетических генов подстраивался к З'-концу гена фермента р-галактозидазы и вводил­ся в векторную плазмиду (pBR322). Клетки Е. coli, трансформиро­ванные такими рекомбинантными плазмидами, производили гиб­ридные (химерные) белки, состоящие из фрагмента р-галактози- дазы и А или В пептида инсулина, присоединенного к ней через остаток метионина. При обработке химерного белка бромцианом пептид освобождается. Однако замыкание дисульфидных мостиков между образованными цепями инсулина происходило с трудом.

В 1981 г. синтезирован ген-аналог проинсулина — мини-С-про- инсулин, в котором 35-звенный С-пептид был заменен на сег­мент из шести аминокислот: арг-арг-гли-сер-лиз-арг и показана его экспрессия в Е. coli.

В 1980 г. У.Гилберт с сотрудниками выделили мРНК инсулина из опухоли Р-клеток поджелудочной железы крысы и с помощью обрат­ной транскриптазы получили с нее кДНК. Полученную кДНК встрои­ли в плазмиду pBR322 Е. coli, в среднюю часть гена пенициллиназы. Рекомбинантная плазмида содержала информацию о структуре про­инсулина. В результате трансляции мРНК в клетках синтезировался гибридный белок, содержащий последовательности пенициллина­зы и проинсулина, который выщепляли из такого белка трипсином.

В 1978 г. сотрудниками Института биоорганической химии под руководством акад. Ю. А. Овчинникова был осуществлен синтез двух структурных генов, кодирующих синтез нейропептидов: лейцин- энкефалина и брадикинина. Синтезированный ген лейцин-энкефа- лина имел два «липких» конца:

5- 3'

«липкий» ААТХц AT ГТАТ Г Г Т Г Г Ц Т Т ТЦ Т Г ТА А <'™пкий>>™ конец ЕсоМ ■ ■ ?ТАЦАТАццАцц?ааа?аЦАТТЦТАГ ®amHI

Полученный синтетический ген был встроен вместе с фрагмен­том природной ДНК, содержащим промотор и проксимальную часть гена белка Р-галактозидазы кишечной палочки Е. coli, в плазмиду

-Ген проинсулина

СООН

CP - галактозидазный S гибридный белок S

ИИОЕ!

JcNBr

Проинсулин

Ферментативное расщепление

А-цепь

Рис. 5.11. Схема синтеза инсулина

вектор pBR322 и обработан смесью рестриктаз — EcoRI и BamHI Полученная рекомбинантная плазмида рЕк была трансформиро; вана в клетки Е. coli. В результате экспрессии встроенного ген бактерия начала продуцировать гибридный (химерный) белок, cqf держащий на N-конце участок Р-галактозидазы, а на С-конце последовательность нейропептида. С помощью бромциана химер ный белок расщепляли in vitro и получали активный лейцин-энк4 фалин. На рис. 5.12 представлены схема клонирования синтетиче| кого гена лейцин-энкефалина и его экспрессия в клетках кише<|| ной палочки.

и

Аналогичным путем был синтезирован соматостатин — гор­мон гипоталамуса (рис. 5.13). Молекула соматостатина состоит из 14 аминокислотных остатков. Соматостатин подавляет выделение инсу­лина и гормона роста человека. В Национальном медицинском цен­тре «Хоуп» (Калифорния) был осуществлен химико-ферментатив­ный синтез гена длиной в 42 нуклеотида, способного кодировать соматостатин. Участок ДНК, кодирующий гормон соматостатин, получен путем соединения тринуклеотидов. Из 52 н. п. синтетического гена 42 пары составляли структурный ген гормона, а остальные слу­жили для присоединения синтетического гена к плазмиде pBR322,

h3N -Тир- Гли • Гли • Фен-Лей(ОН)-Лейцин-энкефалин

Химико-ферментативный синтез гена Мет^ Тир Гли Гли^ Фен Лей Stop

-3'

ДАТТЦДТГТАТГГТГГЦТТТЦТГТАА ■ •• •• •••• ••• • •«« • •• ••

«липкии» конец

/ ГТАЦАТАЦЦАЦЦГАААГАЦАТ [ГЦТАГ, .

«липкий» конец BamHI

/V

(р-галактозидаза)

•он >

\ Ч

Рекомбинантная плазмида

1. Транс­формация в E.coli

EcoRI EcoRI

Плазмида

Н г, ^

BamHI Vя Р / I

74

t

Э Т4 ДНК-лигаза

2. Синтез белка in viv

o

Фрагмент

h3N р^галаето"- Мет-ТирТлиТли-Фен-Лей(ОН) зидазы

Гибридный белок

/ Расщепление У BrCN in vitro

Фрагменты Активный лейцин-энкефалин р-галактозидазы

Рис. 5.12. Схема синтеза гибридного и активного лейцин-энкефалин

а

и

о

<4 li.

i f

83-

X ж и—о I

яа также к сегменту лактозного оперона (lac) из генома Е. coli или к (3-галактозидазному гену. Такую синтетическую чужеродную ДНК встраивали непосредственно за бактериальным геномом (или внут­ри его) после расщепления ДНК рестрикционными эндонуклеаза- ми с образованием в результате трансляции гибридного белка.

studfiles.net

Инсулин. Строение, синтез и секреция

Инсулин - полипептид, состоящий из двух полипептидных цепей. Цепь А содержит 21 аминокислотный остаток, цепь В - 30 аминокислотных остатков. Обе цепи соединены

между собой двумя дисульфидными мостиками (рис. 11-23). Инсулин может существовать в нескольких формах: мономера, димера и гек-самера. Гексамерная структура инсулина стабилизируется ионами цинка, который связывается остатками Гис в положении 10 В-цепи всех 6 субъединиц.

Молекула инсулина содержит также внутримолекулярный дисульфидный мостик, соединяющий шестой и одиннадцатый остатки в А-цепи. Инсулины некоторых животных имеют значительное сходство по первичной структуре с инсулином человека.

Бычий инсулин отличается от инсулина человека по трём аминокислотным остаткам, а инсулин свиньи отличается только на одну аминокислоту, которая представлена алани-ном вместо треонина на карбоксильном конце В-цепи.

Рис. 11-23. Структура инсулина человека.А. Первичная структура инсулина. Б. Модель третичной структуры инсулина (мономер): 1 - А-цепь; 2 - В-цепь; 3 - участок связывания с рецептором.

В обеих цепях во многих положениях встречаются замены, не оказывающие влияния на биологическую активность гормона. Наиболее часто эти замены обнаруживаются в положениях 8, 9 и 10 цепи А.

В то же время в положениях дисульфидных связей, остатков гидрофобных аминокислот в С-концевых участках В-цепи и С- и N-кон-цевых остатков А-цепи замены встречаются очень редко, что свидетельствует о важности этих участков для проявления биологической активности инсулина. Использование химических модификаций и замен аминокислот в этих участках позволили установить структуру активного центра инсулина, в формировании которого принимают участие остатки фенила-ланина В-цепи в положениях 24 и 25 и N- и С-концевые остатки цепи А.

Биосинтез инсулинавключает образование двух неактивных предшественников, препроинсулина и проинсулина, которые в результате последовательного протеолиза превращаются в активный гормон. Биосинтез препроинсулина начинается с образования сигнального пептида на полирибосомах, связанных с ЭР. Сигналыный пептид проникает в просвет ЭР и направляет поступление в просвет ЭР растущей полипептидной цепи. После окончания синтеза препроинсулина сигнальный пептид, включающий 24 аминокислотных остатка, отщепляется (рис. 11-24).

Проинсулин (86 аминокислотных остатков) поступает в аппарат Гольджи, где под действием специфических протеаз расщепляется в нескольких участках с образованием инсулина (51 аминокислотный остаток) и С-пептида, состоящего из 31 аминокислотного остатка.

Рис. 11-24. Схема биосинтеза инсулина вβ-клетках островков Лангерханса.ЭР - эндоплазматический ретикулум. 1 - образование сигнального пептида; 2 - синтез препроинсулина; 3 - отщепление сигнального пептида; 4 - транспорт проинсулина в аппарат Гольджи; 5 - превращение проинсулина в инсулин и С-пептид и включение инсулина и С-пептида в секреторные гранулы; 6 - секреция инсулина и С-пептида.

Инсулин и С-пептид в эквимолярных количествах включаются в секреторные гранулы. В гранулах инсулин соединяется с цинком, образуя димеры и гексамеры. Зрелые гранулы сливаются с плазматической мембраной, и инсулин и С-пептид секретируются во внеклеточную жидкость в результате экзоцитоза. После секреции в кровь олигомеры инсулина распадаются. T1/2 инсулина в плазме крови составляет 3-10 мин, С-пептида - около 30 мин.

Разрушение инсулина происходит под действием фермента инсулиназы в основном в печени и в меньшей степени в почках.

Регуляция синтеза и секреции инсулина.Глюкоза - главный регулятор секреции инсулина, а β-клетки - наиболее важные глюкозо-чувстви-тельные клетки в организме. Глюкоза регулирует экспрессию гена инсулина, а также генов других белков, участвующих в обмене основных энергоносителей. Действие глюкозы на скорость экспрессии генов может быть прямым, когда глюкоза непосредственно взаимодействует с транскрипционными факторами, или вторичным, через влияние на секрецию инсулина и глюкагона. При стимуляции глюкозой инсулин быстро освобождается из секреторных гранул, что сопровождается активацией транскрипции мРНК инсулина.

Синтез и секреция инсулина не являются строго сопряжёнными процессами. Синтез гормона стимулируется глюкозой, а секреция его является Са2+-зависимым процессом и при дефиците Са2+ снижается даже в условиях высокой концентрации глюкозы, которая стимулирует синтез инсулина.

Потребление глюкозы β-клетками происходит в основном при участии ГЛЮТ-1 и ГЛЮТ-2, и концентрация глюкозы в клетках быстро уравнивается с концентрацией глюкозы в крови. В β-клетках глюкоза превращается в глюкозо-6-фосфат глюкокиназой, имеющей высокую Кт, вследствие чего скорость её фосфорилирования почти линейно зависит от концентрации глюкозы в крови. Фермент глюкокиназа - один из важнейших компонентов глюкозо-чувстви-тельного аппарата β-клеток, в который, помимо глюкозы, вероятно, входят промежуточные продукты метаболизма глюкозы, цитратного цикла и, возможно, АТФ. Мутации глюкокиназы приводят к развитию одной из форм сахарного диабета.

На секрецию инсулина влияют другие гормоны. Адреналин через α2-рецепторы тормозит секрецию инсулина даже на фоне стимуляции глюкозой, β-адренергические агонисты её стимулируют, вероятно, в результате повышения концентрации цАМФ. Этот механизм, полагают, лежит в основе действия гормонов ЖКТ, таких как секретин, холецистокинин и желудочный ингибирующий пептид (GIP), которые повышают секрецию инсулина. Высокие концентрации гормона роста, кортизола, эстрогенов также стимулируют секрецию инсулина.

Похожие статьи:

www.poznayka.org

Биотехнология получения инсулина, гормона роста и интерферона

Получение инсулина.

Инсулин – гормон поджелудочной железы, регулирующий углеводный обмен и поддерживающий нормальный уровень сахара в крови. Недостаток этого гормона в организме приводит к одному из тяжелейших заболеваний – сахарному диабету, который как причина смерти стоит на третьем месте после сердечно-сосудистых заболеваний и рака. Инсулин – небольшой глобулярный белок, содержащий 51 аминокислотный остаток и состоящий из двух полипептидных цепей, связанных между собой двумя дисульфидными мостиками. Синтезируется он в виде одноцепочного предшественника – проинсулина, содержащего концевой сигнальный пептид (23 аминокислотных остатка) и 35-звенный соединительный пептид (С-пептид). При удалении сигнального пептида в клетке образуется проинсулин из 86 аминокислотных остатков, в котором А и В-цепи инсулина соединены С-пептидом, обеспечивающим им необходимую ориентацию при замыкании дисульфидных связей. После протеолитического отщепления С-пептида образуется инсулин.

Известно несколько форм сахарного диабета. Самая тяжёлая форма, для лечения которой больному необходим инсулин (инсулинзависимая форма заболевания), вызвана избирательной гибелью клеток, синтезирующих этот гормон (клетки островков Лангерганса в поджелудочной железе). Форма сахарного диабета, для лечения которой инсулин не требуется, распространена чаще, с ней удаётся справляться с помощью соответствующих диет и режима.

Обычно поджелудочная железа крупного рогатого скота и свиней не используется в мясной и консервной промышленности и поставляется в вагонах-рефрижераторах на фармацевтические предприятия, где проводят экстракцию гормона. Для получения 100 г кристаллического инсулина необходимо 800-1000 г исходного сырья.

Синтез обеих цепей и соединение их дисульфидными связями для получения инсулина были проведены в 1963 и 1965 гг тремя коллективами исследователей в США, Китае и Германии. В 1980 г датская компания «Ново индастри» разработала метод превращения инсулина свиньи в инсулин человека путём замещения 30-го остатка аланина в цепи В на остаток треонина. Оба инсулина не различались по активности и длительности действия.

Работы по генно-инженерному получению инсулина начались около 30 лет назад. В 1978 году появилось сообщение о получении штамма кишечной палочки, продуцирующего крысиный проинсулин (США). В этом же году были синтезированы отдельные цепи человеческого инсулина посредством экспрессии их синтетических генов в клетках E. Coli (рис. 8.21):

1.Каждый из полученных синтетических генов подстраивался к 3'-концу гена фермента в-галактозидазы и вводился в векторную плазмиду - pBR322 (1).

2. Клетки E. Coli, трансформированные такими рекомбинантными плазмидами, производили гибридные (химерные) белки, состоящие из фрагмента в-галактозидазы и А и В пептида инсулина, присоединённого к ней через остаток метионина (2).

3. После обработки химерного белка бромцианом и протеолитического отщепления С-пептида образуется инсулин.

 

 

Рис. 8.21. Схема синтеза инсулина

Синтез соматотропина (гормона роста или ГР).

Соматотропин секретируется передней долей гипофиза. Впервые он был выделен (и очищен) в 1963 г из гипофиза. Его недостаток приводит к заболеванию – гипофизарной карликовости (1 случай на 5000 человек). Гормон обладает видовой специфичностью. Обычно его получают из гипофиза забитых на мясокомбинате животных, но в недостаточном количестве. Гормона хватает лишь для лечения 1/3 случаев гипофизарной карликовости и лишь в развитых странах. Основные производители – Швеция, Италия, Швейцария и США. Молекула ГР человека состоит из 191 аминокислотного остатка.

Принимая во внимание это обстоятельство, в настоящее время ГР синтезируют методами гинетической инженерии в специально сконструированных клетках бактерий. Будучи синтезированным в клетках E. Coli, ГР содержит дополнительный остаток метионина на h3N-конце молекулы. Биосинтез гормона роста из 191 аминокислотного остатка был впервые осуществлён в 1979 году Д. Гедделем с сотрудниками. Сначала клонировали двунитевую кДНК; далее путём расщепления получали последовательность, кодирующую аминокислотный порядок гормона, за исключением первых 23 аминокислот и синтетический полинуклеотид, соответствующий аминокислотам от первой до двадцать третьей, со стартовым ATG-кодоном в начале. Затем два фрагмента объединяли и подстраивали к паре lac-промоторов и участку связывания рибосом. Конечный выход гормона составил 2,4 мкг на 1 мл культуры, что составляет 1000 000 молекул гормона на клетку.

Полученный гормон на конце полипептидной цепи содержал дополнительный остаток метионина и обладал значительной биологической активностью. С 1984 г после многолетних клинических испытаний на токсичность компанией «Генетек» (Сан-Франциско) было начато широкомасштабное производство бактериального соматотропина.

ГР в клетках E. Coli и в культуре клеток животных был получен в 1984 году одновременно в институте Пастера (Париж) и в Институте молекулярной биологии (Москва). Оказалось, что в бактериальных клетках возможен синтез аналогов ГР, с помощью которых изучались участки молекулы, важные для стимулирования роста и процесса неоглюкогенеза на молекулярном уровне.

Огромный интерес представляют выделение и промышленный синтез полипептида, аналога гипоталамического релизинг-фактора соматотропина (СТГ-РФ). Введение этого фактора способно компенсировать недостаток соматотропина. Таким образом, наличие СТГ-РФ и самого гормона, полученных в генетически сконструированных бактериальных клетках, очень важно для успешного лечения заболеваний, таких, как карликовость (для увеличения живой массы и ускорения роста человека и животных), всех форм диабета, регенерации тканей после ожогов и др. Это происходит за счёт того что он, не обладая видовой специфичностью, способен стимулировать освобождение гормона роста у человека и животных.

В селекции крупного рогатого скота перенос гена соматотропина позволяет, по оценке учёных: 1. Увеличить молочную продуктивность и живую массу животных; 2. Повысить содержание белка в молоке и мясе. Научный интерес к действию соматотропина на лактацию млекопитающих проявился ещё более 70 лет назад. Первые работы поизучению влияния соматотропина на молочную продуктивность коров были осуществлены в России ещё в 1937 г (Азимов Г., 1937). В этих исследованиях впервые было показано, что введение неочищенного экстракта из гипофиза приводит к повышению молочной продуктивности лактирующих коров на 8%. Однако сложность очистки этого гормона и весьма ограниченные возможности его производства не позволяли провести широкие исследования по изучению механизмов его действия на молочную продуктивность. И только позднее в экспериментах с использованием соматотропина крупного рогатого скота тонкой очистки было установлено, что ежедневное введение экзогенного гормона приводило к повышению надоев молока на 10-40%. Однако в этих опытах увеличение надоев молока отмечалось лишь в первые 14-16 дней (Banman D., Mc-Cutehon S., 1985).

Известно, что гормон роста, действуя на поверхностные рецепторы клетки, повышает в них синтез белка. Опыты по использованию соматотропина на молочных коровах показали, что, имеется тесная связь между действием гена этого гормона и продуктивностью. Фирма «Монсанто», которая разработала генно-инженерный способ синтеза гормона роста крупного рогатого скота доказала его эффективность (2002 г). При этом отмечается, что самый большой вклад в увеличение продуктивности может дать использование именно этого гормона. Предполагается, что в США к 2018 году этот гормон будут получать 50% коров. Наряду с усовершенствованными технологиями применение гормона позволит повысить средний удой молока от коровы к 2020 году до 9281кг и сократить число коров на 20%.

Получение интерферона.

Интерферон был открыт в 1957 году в Национальном институте медицинских исследований в Лондоне, как факторы устойчивости к вирусной инфекции. Было установлено, что клетки животных, подвергнутых воздействию вируса, выделяют в среду фактор, способный придавать свежим клеткам устойчивость к вирусной инфекции. Он препятствовал (интерферировал) размножению вирусов в клетке и, в силу этой способности, был назван интерфероном.

Известны три группы интерферонов:

1. α (альфа-интерфероны, α-И), образующиеся при воздействии вирусов на лейкоциты;

2. β (бета-интерфероны, β-И), появляющиеся при воздействии вирусов на фибробласты;

3. λ (гамма-интерфероны, λ-И), продуцируемые Т-лимфоцитами в ответ на воздействие бактериальными и вирусными антигенами или антисыворотками против поверхностных детерминант лимфоцитов.

Интерфероны широко используются для лечения различных тяжёлых заболеваний – острого вирусного гепатита, рассеянного склероза, остеосаркомы, миеломы, ряда опухолей гортани, лёгких и мозга.

С учётом видоспецифичности интерферонов, предназначенных для лечения, необходимы такие препараты, которые получены из клеток человека и животных. Традиционно их извлекают из крови человека и животных (из 1 л крови можно выделить всего 1 мкг интерферона, т. е. одну дозу для инъекции). До последнего времени бόльшая часть мирового производства интерферонов осуществлялась в Финляндии и Франции. С 1990 года одна из японских компаний наладила производство лимфобластоидного интерферона из лимфобластоидных клеток. С этой целью культура данных клеток индуцировалась вирусом Сендай, после чего интерферон выделяли с помощью хроматографических колонок, заполненных моноклональными антителами против получаемого интерферона. В Швеции лабробласты выращивали в ферментёрах объёмом 2000 л; полученные интерфероны очищали с помощью моноклональных антител.

Из всех видов интерферонов для мирового производства наиболее пригоден β-И. Фибробласты, получаемые из тканей плода, можно поддерживать в культуре клеток, что даёт возможность массового производства. Метод получения β-интерферона был разработан в Англии.

Выше перечисленные методы получения интерферонов характеризуются низким выходом, высокой стоимостью и недостаточной чистотой препарата. На современном этапе наиболее перспективный метод – биосинтез интерферонов с помощью генетически сконструированных микроорганизмов. ДНК, полученные обратным траскрибированием, были клонированы в E. Coli (рис. 8.23). Это явилось революционным событием в теоретических и прикладных исследованиях интерферонов. Метод состоит из следующих элементов:

1. Ген интерферона от человека встраивают в векторную ДНК; 2. Присоединяют к нему бактериальные регуляторные элементы, программирующие его транскрипцию и трансляцию в бактериальной клетке.

Установлено, что интерфероны синтезируются в клетке сначала в виде предшественников, содержащих на N-конце полипептидной цепи сигнальный пептид, который затем отщепляется и, в результате, образуется зрелый интерферон, обладающий полной биологической активностью. Бактерии не содержат ферментов, способных отщепить сигнальный пептид с образованием зрелого белка. Для того чтобы бактерии синтезировали зрелый интерферон, следует ввести в плазмиду только ту часть гена, которая его кодирует, и удалить часть гена, кодирующую сигнальный пептид. Процедура требует соблюдения следующих условий:

Рис. 8.23. Схема рекомбинантной плазмиды,

Похожие статьи:

poznayka.org

Получение инсулина.

 

Инсулин - гормон поджелудочной железы, регулирующий углеводный обмен и поддерживающий нормальный уровень саха­ра в крови. Недостаток этого гормона в организме приводит к одному из тяжелейших заболеваний - сахарному диабету, кото­рый как причина смерти стоит на третьем месте после сердечно­сосудистых заболеваний и рака. Инсулин - небольшой глобуляр­ный белок, содержащий 51 аминокислотный остаток и состоя­щий из двух полипептидных цепей, связанных между собой двумя дисульфидными мостиками. Синтезируется он в виде одноцепочечного предшественника - препроинсулина, содержащего кон­цевой сигнальный пептид (23 аминокислотных остатка) и 35-звенный соединительный пептид (С-пептид). При удалении сигналь­ного пептида в клетке образуется проинсулин из 86 аминокислот­ных остатков, в котором А и В-цепи инсулина соединены С-пептидом, обеспечивающим им необходимую пространственную ориентацию при за­мыкании дисульфидных связей. После протеолитического отщеп­ления С-пептида образуется инсулин.

Со времени открытия инсулина в 1921 году Бантингом и Бестом, которые выделили гормон из поджелудочной железы новорожденного теленка и показали снижение уровня глюкозы в сыворотке крови экспериментального животного после введения препарата, прошло больше 80 лет. За это время была создана индустрия производства инсулина.

Обычно поджелудочная железа крупного рогатого скота и свиней не используется в мясной и консервной промышленности и постав­ляется в вагонах-рефрижераторах на фармацевтические предприя­тия, где проводят экстракцию гормона. Для получения 100 г крис­таллического инсулина необходимо 800 -1000 кг исходного сырья. Однако такой инсулин отличается по строению (аминокислотной последовательности) от инсулина человека и его использование напрямую малоэффективно. Например свиной инсулин отличается от человеческого на одну аминокислоту у С-конца В-цепи (аланин вместо треонина- на) Поэтому предварительно проводят химическую модификацию животного инсулина с целью придания ему структуры человеческого инсулина. Замену аланина на треонин осуществляют путем катализируемого ферментом отщепления аланина и присоединение вместо него защищенного по карбоксильной группе остатка треонина, присутствуещего в реакционной смеси в большом избытке. После отщепления защитной О-трет-бутильной группы получают инсулин человека.

Развитие с середины 1970-х годов технологии получения рекомбинантных ДНК значительно изменило характер исследований, проводимых в области генетики, молекулярной биологии и биотехнологии. Разработка методов изменения генетического аппарата клеток, позволяющих вводить в них чужеродные гены, клонировать их, экспрессировать и получать биосинтетические белки в необходимом количестве обеспечила возможность создания новой отрасли фармацевтической промышленности и обеспечения здравоохранения различными белковыми препаратами (инсулином, эритропоэтином, интерферонами и др.)

Работы по генно-инженерному получению инсулина начались около 20 лет назад. В 1978 г. появилось сообщение о получении штамма кишечной палочки, продуцирующего крысиный проинсулин (США). В этом же году были синтезированы отдельные цепи человеческого инсулина посредством экспрессии их синтетических генов в клет­ках Е. coli. Каждый из полученных синтетических генов последовательно подстраивался к 3 '-концу гена фермента (β-галактозидазы и вводил­ся в векторную плазмиду (pBR322). Клетки Е. coli, трансформиро­ванные такими рекомбинантными плазмидами, производили гиб­ридные (химерные, рекомбинантные) белки, состоящие из фрагмента β-галактозидазы, соединенной через остаток метионина с А и В цепями инсулина. При обработке in vitro химерного белка бромцианом пептид А-В высвобождался и далее ферментативно расщеплялся на фрагменты А и В. Однако замыкание дисульфидных мостиков между несвязанными С-пептидом А и В-звеньями инсулина происходило с трудом и данный метод получения инсулина не получил своего развития .

Поэтому в дальнейшем был разработан метод получения проинсулина человека целиком, с последующей его трансформацией в инсулин in vitro. Для этого искусственно была синтезирована нуклеотидная последовательность кодирующая структуру проинсулина, которая затем была встроена в плазмиду к 3 '-концу гена β-галактозидазы. Трансформированные такими плазмидами клетки Е. coli синтезировали химерный белок, состоящий из фрагментов проинсулина и β-галактозидазы, который далее in vitro последовательно превращали в инсулин человека (рис.1.).

 

 

 

Похожие статьи:

poznayka.org

Схемы инсулинотерапии

схемы инсулинотерапии Существует несколько схем введения инсулина для больных диабетом. Для каждой схемы характерна своя методика и суточное количество вводимой дозы инсулина. В связи с особенностями организма, разной физической нагрузкой, принимаемой пищей диабетику назначается индивидуальная доза лекарства, рассчитанная по той или иной схеме.

схемы инсулинотерапииТеоретически рассчитать необходимое количество инсулина очень сложно — одна и та же доза, введенная разным больным, может вызвать разную реакцию организма, обусловленную эффективностью препарата, сроком и продолжительностью его действия. Расчет количества инсулина осуществляется в больнице, самостоятельно диабетик уточняет количество, соотнося его с интенсивностью физической нагрузки, принятой пищей и сахаром в крови.

Схемы введения инсулина

Среди существующих схем инсулинотерапии выделяется 5 основных видов:
  1. Однократная инъекция инсулина продолжительного или промежуточного действия;
  2. Двукратная инъекция промежуточного инсулина;
  3. Двукратная инъекция инсулина промежуточного и короткого действия;
  4. Трехкратная инъекция инсулина короткого и пролонгированного действия;
  5. Базис – болюсная схема.

Процесс естественной суточной секреции инсулина можно представить в виде линии, имеющей вершины в моменты пика инсулина, возникающие через час после приема пищи (График 1). К примеру, если человек, принял пищу в 7 утра, 12 дня, 18 и 22 часа вечера, то пик инсулина придется на 8 утра, 13 дня, 19 и 23 часа вечера.

график 1Кривая естественной секреции имеет прямые участки, соединив которые получим базис – линию. Прямые участки соответствуют периодам, в течение которых человек, не страдающий сахарным диабетом, не принимает пищу и инсулин выделяется мало. В момент выделения инсулина после приема пищи прямая естественной секреции разделяется горообразными вершинами с резким подъемом и менее резким спадом.

Линия с четырьмя вершина это «идеальный» вариант, соответствующий выделению инсулина при 4 – разовом питании в строго определенное время.

По факту здоровый человек может передвинуть время питания, пропустить обед или ужин, совместить ланч с обедом или сделать несколько перекусов, в этом случае на кривой появятся дополнительные небольшие пики инсулина.

Вернуться к содержанию

Однократная инъекция инсулина продолжительного или промежуточного действия

схемы инсулинотерапииОднократная инъекция обусловлена введением инсулина суточной дозы утром перед завтраком.

Действие данной схемы представляет собой кривую, берущей свое начало в момент введения лекарства, достигающей пика в момент второго завтрака и снисходящей вниз к ужину (график 2)

график 2 Схема одна из самых простых, имеет множество недостатков:
  • Кривая действия однократной инъекции менее всего похожа на кривую естественной секреции инсулина.
  • Применение данной схемы предполагает прием пищи несколько раз в день – легкий завтрак сменяется обильным ланчем, менее обильным обедом и малым ужином.
  • Количество и состав пищи должен быть соотнесен с эффективностью действия инсулина в данный момент и степенью физической нагрузки.
К недостаткам схемы относится высокий процент риска возникновения гипогликемии, как днем, так и ночью. Возникновение ночной гипогликемии, сопровождающейся увеличенной дозой утреннего инсулина, повышает риск появление гипогликемии в момент максимальной эффективности лекарства

Введение значительной дозы инсулина нарушает жировой обмен организма, что может привести к образованию сопутствующих заболеваний.

Данная схема не рекомендована для людей с диабетом 1 типа, диабетиками 2 типа терапия применяется совместно с сахаропонижающими препаратами, вводимыми во время ужина.

Вернуться к содержанию

Двукратная инъекция инсулина промежуточного действия

Данная схема инсулинотерапии обусловлена введением лекарства утром перед завтраком и вечером перед ужином. Суточная доза инсулина разделяется на утро и вечер в соотношении 2:1 соответственно (график 3).

график 3
  • Преимуществами схемы является то, что снижается риск появления гипогликемии, а разделение инсулина на два приема способствует меньшей дозе, циркулирующей в организме человека.
  • К недостаткам схемы относится жесткая привязанность к режиму и рациону питания — диабетик должен питаться на менее 6 раз в сутки. Кроме того, кривая действия инсулина, также как в первой схеме, далека от кривой естественной секреции инсулина.

Вернуться к содержанию

Двукратная инъекция инсулина промежуточного и короткого действия

Одной из оптимальных схем считается двукратная инъекция инсулина промежуточного и короткого действия.

схемы инсулинотерапииДля данной схемы характерно введение лекарства утром и вечером, но в отличие от предыдущей схемы, появляется возможность варьирования суточной дозы инсулина в зависимости от предстоящей физической нагрузки или приема пищи.

У диабетика, благодаря манипулированию дозировкой инсулина, появляется возможность разнообразить диабетическое меню, употребив продукт с высоким содержанием сахара или увеличить объем принимаемой пищи (график 4).

график 4
  • Если днем планируется активное времяпровождение (прогулка, уборка, ремонт) утренняя доза короткого инсулина увеличивается на 2 ЕД, а промежуточного уменьшается на 4 – 6 ЕД, так как снижению сахара будет способствовать физическая нагрузка;
  • Если вечером планируется торжественное мероприятие с обильным ужином следует дозу короткого инсулина увеличить на 4 ЕД, промежуточного — оставить в том же количестве.

Благодаря рациональному делению суточной дозы лекарства кривая двукратной инъекции инсулина промежуточного и короткого действия наиболее приближена к кривой естественной секреции, что делает ее наиболее оптимальной и подходит для лечения сахарного диабета 1 типа. Введенное количество инсулина равномерно циркулирует в крови, что снижает риск возникновения гипогликемии.

Несмотря на достоинства, схема не лишена недостатков, один из которых связан с жестким режимом питания. Если двукратная инсулинотерапия разрешает разнообразить ассортимент принимаемой пищи, то отступать от расписания питания категорически воспрещено. Отклонение от графика на полчаса грозит возникновением гипогликемии.

Вернуться к содержанию

Трехкратная инъекция инсулина короткого и пролонгированного действия

схемы инсулинотерапииСхема трехкратной инъекции инсулина в утренние часы и днем совпадает с предыдущей схемой двукратной терапии, но более гибка в вечерние часы, что делает ее оптимальной. Схема предполагает введение смеси инсулина короткого и пролонгированного действия в утренние часы перед завтраком, дозы короткого инсулина перед обедом и небольшой дозы пролонгированного инсулина перед ужином (график 5).график 5

Схема более гибка, так как разрешает смену времени вечернего приема пищи и уменьшении дозы пролонгированного инсулина. Кривая трехкратной инъекции наиболее приближена к кривой естественной секреции инсулина в вечернее время суток.

Вернуться к содержанию

Базис – болюсная схема

Базис – болюсная схема инсулинотерапии или интенсивная наиболее перспективная, так как максимально приближена к кривой естественной секреции инсулина.

При базис-болюсной схеме введения инсулина половина суммарной дозы приходится на инсулин длительного действия, а половина — на «короткий». Две трети пролонгированного инсулина вводится в первой и второй половине дня, остальная часть вечером. Доза «короткого» инсулина зависит от количества и состава принятой пищи.график 6

Малые дозы инсулина не вызывают риска возникновения гипогликемии, обеспечивая необходимую дозу лекарства в крови.

Вернуться к содержанию

>

saydiabetu.net


Смотрите также