Строение инсулина


Строение инсулина

Количество просмотров публикации Строение инсулина - 89

Гормоны поджелудочной желœезы

Механизм действия и метаболические эффекты инсулина.

ЛЕКЦИЯ № 10

Клеточный (метаболический) уровень регуляции углеводного обмена

Метаболический уровень регуляции углеводного обмена осуществляется с участием метаболитов и поддерживает гомеостаз углеводов внутри клетки. Избыток субстратов стимулирует их использование, а продукты ингибируют свое образование. К примеру, избыток глюкозы стимулирует гликогенез, липогенез и синтез аминокислот, дефицит глюкозы - глюконеогенез. Дефицит АТФ стимулирует катаболизм глюкозы, а избыток – наоборот ингибирует.

IV. Педфак. Возрастные особенности ПФШ и ГНГ, значение.

ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2006 г

Тема: Структура и обмен инсулина, его рецепторов, транспорт глюкозы.

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический. 2 курс.

Поджелудочная желœеза выполняет в орга­низме две важнейшие функции: экзокринную и эндокринную. Экзокринную функцию выполняет ацинарная часть поджелудочной желœезы, она синтезирует и секретирует панкреатический сок. Эндокринную функцию выполняют клетки островкового аппарата поджелудочной желœезы, которые секретируют пептидные гормоны, уча­ствующие в регуляции многих процессов в организме. 1-2 млн. островков Лангерганса составляют 1-2% массы поджелудочной желœезы.

В островковой части поджелудочной желœезы выделяют 4 типа клеток, секретирующих разные гормоны: А- (или α-) клетки (25%) секретируют глюкагон, В- (или β-) клетки (70%) — инсулин, D- (или δ-) клетки (<5%) — соматостатин, F-клетки (следовые количества) секретируют панкреатический полипептид. Глюкагон и инсулин в основном влияют на углеводный обмен, соматостатин локально регулирует секрецию инсулина и глюкагона, панкреатический полипептид влияет на секрецию пищеварительных соков. Гормоны поджелудочной желœезы выделяются в панкреатическую вену, которая впадает в воротную. Это имеет большое значение т.к. печень является главной мишенью глюкагона и инсулина.

Инсулин — полипептид, состоящий из двух цепей. Цепь А содержит 21 ами­нокислотный остаток, цепь В — 30 аминокислотных остатков. В инсулинœе 3 дисульфидных мостика, 2 соединяют цепь А и В, 1 соединяет 6 и 11 остатки в А цепи.

Инсулин может существовать в форме: мономера, димера и гексамера. Гексамерная структура инсулина стабилизиру­ется ионами цинка, который связывается остатками Гис в положении 10 В-цепи всœех 6 субъединиц.

Инсулины некоторых животных имеют значительное сходство по первичной структуре с инсулином человека. Бычий инсулин отличается от инсулина че­ловека на 3 аминокислоты, а инсулин свиньи отличается только на 1 ами­нокислоту (ала вместо тре на С конце В-цепи).

Во многих положениях А и В цепи встре­чаются замены, не оказывающие влияния на биологическую активность гормона. В положениях дисульфидных связей, остатков гидрофобных аминокислот в С-концевых участках В-цепи и С- и N-концевых остатков А-цепи замены встречаются очень редко, т.к. эти участки обеспечивают формирование активного центра инсулина.

Биосинтез инсулинавключает образование двух неактивных предшественников, препроинсулина и проинсулина, которые в результате последова­тельного протеолиза превращаются в активный гормон.

1. На рибосомах ЭПР синтезируется препроинсулин (L-В-С-А, 110 аминокислот), биосинтез его начинается с образования гидрофобного сигнального пептида L (24 аминокислот), который направляет растущую цепь в просвет ЭПР.

2. В просвет ЭПР препроинсулин превращается в проинсулин при отщеплении эндопептидазой I сиг­нального пептида. Цистеины в проинсулинœе окисляются с образованием 3 дисульфидных мостиков, проинсулин становиться ʼʼсложнымʼʼ, имеет 5% активности от инсулина.

3. ʼʼСложныйʼʼ проинсулин (В-С-А, 86 аминокислот) поступает в аппарат Гольджи, где под действи­ем эндопептидазы II расщепляется с образованием инсулина (В-А, 51 аминокислот) и С-пептида (31 аминокислота).

4. Инсулин и С-пептид включаются в секреторные гранулы, где инсулин соединяется с цинком, обра­зуя димеры и гексамеры. В секреторной грануле содержание инсулина и С-пептида составляет 94%, проинсулина, интермедиатов и цинка - 6%.

5. Зрелые гранулы сли­ваются с плазматической мембраной, а инсу­лин и С-пептид попадают во внеклеточную жидкость и далее в кровь. В крови олигомеры инсулина распадают­ся. За сутки в кровь секретируется 40-50 ед. инсулина, это составляет 20% от его общего запаса в поджелудочной желœезе. Секреция инсулина энергозависимый процесс, происходит с участием микротубулярно-ворсинчатой системы.

Схема биосинтеза инсулина в β-клетках островков Лангерганса

ЭПР — эндоплазматический ретикулум. 1 — образование сигнального пептида; 2 — синтез препроинсулина; 3 — отщепление сигнального пептида; 4 — транспорт проинсу­лина в аппарат Гольджи; 5 — превращение проинсулина в инсулин и С-пептид и включение инсулина и С-пептида в секреторные гранулы; 6 — секреция инсулина и С-пептида.

Ген инсулина находиться в 11 хромосоме. Выявлены 3 мутации этого гена, у носителœей низкая активность инсулина, отмечается гиперинсулинœемия, нет инсулинорезистентности.

referatwork.ru

Инсулин - Строение

Химия - Инсулин - Строение

01 марта 2011

Оглавление:1. Инсулин2. Строение3. Образование и секреция4. Действие инсулина5. Клиренс инсулина6. Регуляция уровня глюкозы в крови7. Заболевания, связанные с действием инсулина8. Коммерческие препараты инсулина и аналоги инсулина человека9. Инсулинотерапия

Молекула инсулина образована двумя полипептидными цепями, содержащими 51 аминокислотный остаток: A-цепь состоит из 21 аминокислотного остатка, B-цепь образована 30 аминокислотными остатками. Полипептидные цепи соединяются двумя дисульфидными мостиками через остатки цистеина, третья дисульфидная связь расположена в A-цепи.

Первичная структура инсулина у разных биологических видов несколько различается, как различается и его важность в регуляции обмена углеводов. Наиболее близким к человеческому является инсулин свиньи, который различается с ним всего одним аминокислотным остатком: в 30 положении B-цепи свиного инсулина расположен аланин, а в инсулине человека — треонин; бычий инсулин отличается тремя аминокислотными остатками.

Открытие и изучение

В 1869 году в Берлине 22-летний студент-медик Пауль Лангерганс изучая с помощью нового микроскопа строение поджелудочной железы, обратил внимание на ранее неизвестные клетки, образующие группы, которые были равномерно распределены по всей железе. Назначение этих «маленьких кучек клеток», впоследствии известных как «островки Лангерганса», было непонятно, но позднее Эдуад Лагус показал, что в них образуется секрет, который играет роль в регуляции пищеварения.

В 1889 году немецкий физиолог Оскар Минковски, чтобы показать, что значение поджелудочной железы в пищеварении надумано, поставил эксперимент, в котором произвёл удаление железы у здоровой собаки. Через несколько дней после начала эксперимента, помощник Минковски, который следил за лабораторными животными, обратил внимание на большое количество мух, которые слетались на мочу подопытной собаки. Исследовав мочу, он обнаружил, что собака с мочой выделяет сахар. Это было первое наблюдение, позволившее связать работу поджелудочной железы и сахарный диабет. В 1900 году Леонид Васильевич Соболев обнаружил, что после перевязки протоков поджелудочной железы железистая ткань атрофируется, а островки Лангерганса сохраняются. Диабет при этом не возникает. Эти результаты наряду с известным фактом изменения островков у больных диабетом позволили Соболеву сделать заключение, что островки Лангерганса необходимы для регуляции углеводного обмена. В 1901 году был сделан следующий важный шаг, Евген Опи чётко показал, что «Сахарный диабет… обусловлен разрушением островков поджелудочной железы, и возникает только когда эти тельца частично или полностью разрушены». Связь между сахарным диабетом и поджелудочной железой была известна и раньше, но до этого не было ясно, что диабет связан именно с островками.

В следующие два десятилетия были предприняты несколько попыток выделить островковый секрет как потенциальное лекарство. В 1906 Georg Ludwig Zuelzer достиг некоторого успеха в снижении уровня глюкозы в крови подопытных собак панкреатическим экстрактом, но не мог продолжить свою работу. E. L. Scott между 1911 и 1912 в Чикагском университете использовал водный экстракт поджелудочной железы и отмечал «некоторое уменьшение гликозурии», но он не смог убедить своего руководителя в важности своих исследований, и вскоре эти эксперименты были прекращены. Такой же эффект демонстрировал и Израэль Кляйнер в Рокфеллеровском университете в 1919, но его работа была прервана началом первой мировой войны, и он не смог её завершить. Похожую работу после опытов во Франции в 1921 году опубликовал и профессор физиологии Румынской школы медицины Никола Паулеско, и многие, в том числе и в Румынии, считают именно его первооткрывателем инсулина.

Однако практическое выделение инсулина принадлежит группе учёных Торонтского университета. В октябре 1920 года Фредерик Бантинг прочитал в работах Минковского о том, что если препятствовать выделению пищеварительного сока из поджелудочной железы у собак, то железистые клетки вскоре погибают, а островки остаются живыми, и сахарный диабет у животных не развивается. Этот интересный факт заставил его задуматься над возможностью выделения из железы неизвестного фактора, способствующего снижению уровня сахара в крови. Из его записок: «перевязать собаке панкреатический проток. Оставить собаку, пока не разрушатся ацинусы и останутся только островки. Попытаться выделить внутренний секрет и подействовать на гликозурию…»

В Торонто Бантинг, встретился с Дж. Маклеодом и изложил ему свои соображения в надежде заручиться его поддержкой и получить необходимое для работы оборудование. Идея Бантинга сперва показалась профессору абсурдной и даже смешной. Но молодому учёному всё-таки удалось убедить Маклауда поддержать проект. И летом 1921 года он предоставил Бантингу университетскую лабораторию и ассистента, 22-летнего Чарльза Беста, а также выделил ему 10 собак. Их метод заключался в том, что вокруг выводного протока поджелудочной железы затягивалась лигатура, препятствуя выделению из железы панкреатического сока, и спустя несколько недель, когда внешнесекреторные клетки погибли, в живых оставались тысячи островков, из которых им удалось выделить белок, который достоверно снижал уровень сахара в крови у собак с удалённой поджелудочной железой. Сперва его назвали «айлетин».

Вернувшись из Европы, Маклауд оценил значение всей проделанной его подчинённым работы, однако для того, чтобы быть полностью уверенным в эффективности метода, профессор потребовал ещё раз проделать эксперимент в своем присутствии. И спустя несколько недель стало ясно, что вторая попытка также успешна. Однако выделение и очистка «айлетина» из поджелудочных желез собак было чрезвычайно трудоёмкой и длительной работой. Бантинг решил попытаться использовать в качестве источника поджелудочные железы плодов телят, в которых ещё не вырабатываются пищеварительные ферменты, но уже синтезируется достаточное количество инсулина. Это существенно облегчило работу. После решения проблемы с источником инсулина следующей важной задачей стала очистка белка. Для её решения в декабре 1921 Маклауд привлёк блестящего биохимика, Джеймса Коллипа, который в итоге сумел разработать эффективный метод очистки инсулина.

И 11 января 1922 года, после множества успешных испытаний с собаками, страдающему диабетом 14-летнему Леонарду Томпсону была сделана первая в истории инъекция инсулина. Однако первый опыт применения инсулина оказался неудачным. Экстракт оказался недостаточно очищенным, и это привело к развитию аллергии, поэтому инъекции инсулина были приостановлены. Следующие 12 дней Коллип напряжённо работал в лаборатории над улучшением экстракта. А 23 января Леонарду была введена вторая доза инсулина. На сей раз успех был полным, не было не только явных побочных действий, но и у больного перестал прогрессировать диабет. Однако впоследствии Бантинг и Бест не сработались с Коллипом и вскоре с ним расстались.

Потребовались большие количества чистого инсулина. И прежде чем был найден эффективный способ быстрого промышленного получения инсулина, была проведена очень большая работа. Важную роль в этом сыграло знакомство Бантинга с Элай Лилли, будущим основателем крупнейшей фармакологической компании.

За это революционное открытие Маклауд и Бантинг в 1923 году были удостоены Нобелевской премии по физиологии и медицине. Бантинг сперва был сильно возмущён, что его помощник Бест не был представлен к награде вместе с ним, и поначалу даже демонстративно отказался от денег, но потом всё же согласился принять премию, и свою часть торжественно разделил с Бестом. Так же поступил и Маклауд, поделив свою премию с Коллипом. А патент на инсулин был продан Торонтскому университету за один доллар, и вскоре началось производство инсулина в промышленных масштабах.

Заслуга по определению точной последовательности аминокислот, образующих молекулу инсулина принадлежит британскому молекулярному биологу Фредерику Сенгеру. Инсулин стал первым белком, для которого была полностью определена первичная структура. За проделанную работу в 1958 году он был удостоен Нобелевской премии по химии. А спустя почти 40 лет Дороти Кроуфут Ходжкин с помощью метода рентгеновской дифракции определила пространственное строение молекулы инсулина. Её работы также отмечены Нобелевской премией.

Просмотров: 8606

4108.ru

Инсулин строение - Справочник химика 21

    Схема строения инсулина [c.394]

    Инсулин, строение, синтез, механизм действия, ткани-мишени. Метаболические эффекты. [c.428]

    Установлено строение белкового гормона инсулина, регулирующего сахарный обмен в организме. Эгот гормон состоит из двух полипептидных цепей (с 21 и 30 аминокислотными остатками), соеди- [c.342]

    Инсулин, строение, синтез, биологическое действие. Характеристика нарущений обмена веществ при сахарном диабете. Биохимические механизмы развития осложнений сахарного диабета. [c.429]

    Все многообразие белков образовано 20 различными аминокислотами при этом для каждого белка строго специфичной является последовательность, в которой остатки входящих в его состав аминокислот соединяются друг с другом. Найдены методы выяснения этой последовательности в резу.пьтате уже точно установлено строение ряда белков. И самым замечательным достижением в этой области явилось осуществление синтеза из аминокислот простейших белков как уже указывалось, в 50—60-х годах XX века синтетически получены гормон инсулин и фермент рибонуклеаза. [c.586]     В конце 40-х — начале 50-х годов нашего века химикам удалось обстоятельно проанализировать с помощью метода бумажной хроматографии смеси аминокислот, полученные при расщеплении ряда белков. В результате удалось установить общее число остатков каждой аминокислоты, содержащихся в молекуле белка, однако порядок расположения аминокислот в полипептидной цепи при этом определить, естестве шо, было нельзя. Английский химик Фредерик Сенгер (род. в 1918 г.) изучал инсулин — белковый гормон, состоящий примерно из пятидесяти аминокислот, распределенных между двумя взаимосвязанными пол и пептидными цепями. Сенгер расщепил молекулу на несколько более коротких цепей и проанализировал каждую из них методом бумажной хроматографии. Восемь лет продолжалась кропотливая работа по складыванию мозаики , но к 1953 г. был установлен точный порядок расположения аминокислот в молекуле инсулина. Позднее таким же способом было установлено детальное строение даже больших молекул белка [c.130]

    Последние десятилетия ознаменовались рядом новых исследований, которые привели вначале к синтезу природных биологически активных полипептидов, содержащих сравнительно небольшое число аминокислотных звеньев . И, наконец, совсем недавно (1964) осуществлен первый синтез белка — уже упомянутого на стр. 293 инсулина, строение которого было установлено лишь немногим более 10 лет назад. [c.294]

    Определение строения белков является очень сложной задачей, но за последние годы в химии белка достигнуты значительные успехи. Полностью определена химическая структура нескольких белков гормона инсулина (см, рис. 53), фермента, расщепляющего нуклеиновые кислоты, — рибонуклеазы (см. рис. 54), фермента лизоцима (рис. 56), [c.375]

    Современные методы исследования позволяют не только устанавливать строение белков, но и синтезировать если не высокомолекулярные белки, то простейшие биологически активные вещества — полипептиды. Так, недавно был синтезирован ряд гормонов и антибиотиков. Недалеко, по-видимому, и то время, когда будут синтезированы и первые белки— инсулин и рибонуклеаза. [c.435]

    При сопоставлении полученных результатов обнаружилось два чрезвычайно интересных факта. Прежде всего оказалось, что, хотя у разных представителей животного мира строение определенного гормона очень сходно, все же существуют четкие видовые различия. Так, например, инсулин, выделенный из организма кита и свиньи, совершенно тождествен, в то время как инсулин лошади отличается тем, что одна из 51 аминокислоты (серин) заменена на другую — глицин. Эти наблюдения дают право говорить, что био-логия с помощью химии приближается к возможности устанавливать видовые различия не по строению скелета, органов, а по химическому строению характерных для организма белков. [c.343]

    Такие белки, как инсулин и гемоглобин, обладают рядом специфических свойств, благодаря которым приобретают особо важное значение для организма. Инсулин — гормон, способствующий процессу окисления сахара в организме животного. Гемоглобин обратимо связывает кислород, присоединяя его в легких и отдавая в тканях. Эти точно установленные функции наглядно показывают, что молекулы белка должны обладать специфическим строением. [c.394]

    Число белков, химическое строение которых полностью рас-шифровано растет с каждым годом. При сопоставлении полученных результатов обнаружились два чрезвычайно интересных факта прежде всего оказалось, что хотя у разных представителей животного мира строение определенного гормона очень сходно, однако все же существуют четкие видовые отличия. Так, например, инсулин, выделенный из организма кита и свиньи, совершенно тождествен, в то время как в инсулине лошади одна из 51 аминокислот заменена на другую. С другой стороны выяснилось, что носителем биологической активности может быть не вся белковая молекула, а определенная часть ее. Так, в растительном ферменте — папаине, построенном из 180 аминокислотных остатков, можно [c.335]

    Руль и Анфинсен в своей работе по определению положения дисульфидных связей использовали способность рибонуклеазы расщепляться субтилизином. Они установили следующие положения 5 — 5 мостиков 1—6, 3—7, 8—2 и 4—5. Рибонуклеаза является вторым (после инсулина) белком, строение которого расшифровано. [c.524]

    Видимо, денатурационные изменения на первых этапах процесса могут иметь обратимый характер. Денатурированный инсулин, имеющий фибриллярное строение, после обработки щелочью снова превращается в кристаллический и др. [c.212]

    Успехи в изучении и синтезе белков. Уже первое ознакомление с белками дает некоторое представление о чрезвычайно сложном строении их молекул. На современном этапе развития химической науки еще очень трудно выявить структуры молекул белков. Первый белок, у которого в 1954 г. удалось расшифровать первичную структуру, был инсулин (регулирует содержание сахара в крови). Для этого потребовалось почти 10 лет. Молекула инсулина состоит из двух полипептидных цепочек. Одна из них содержит 21, а другая—30 аминокислотных остатков, В настоящее время осуществлен синтез инсулина. Для получения одной из полипептидных цепочек потребовалось провести 89 реакций, а для получения другой —138. В живых организмах синтез белков происходит очень быстро (иногда почти мгновенно), поэтому ученые настойчиво изучают его механизм. [c.21]

    Существенным подтверждением полипептидной теории строения белка является возможность синтеза чисто химическими методами полипептидов и белков с уже известным строением инсулина-51 аминокислотный остаток, лизоцима-129 аминокислотных остатков, рибонуклеазы -124 аминокислотных остатка . Синтезированные белки обладали аналогичными природным белкам физико-химическими свойствами и биологической активностью. [c.51]

    К пептидным гормонам относятся инсулин, продуцируемый поджелудочной железой, регулирующий метаболизм углеводов, жиров и белков, содержащий 51 аминокислотный остаток секретин, вырабатываемый в желудочно-кишечном тракте, определяющий секреторную функцию желудочно-кишечного тракта, содержащий 21 аминокислотный остаток в передней доле гипофиза вырабатываются адренокор-тикотропин (34 аминокислоты), контролирующий активность коры надпочечников, пролактин (198 аминокислот), влияющий на рост грудных желез и секрецию молока в задней доле гипофиза вырабатываются вазопрессин (9 аминокислот), действующий как диуретик и сосудосуживающее, и окси-тоцин (9 аминокислот), стимулирующий сокращение гладкой мускулатуры. Это только иллюстративный перечень гормонов пептидной структуры — их значительно больше, многие из них еще изучены не полностью, как в плане строения, так и функциональности. Особенно важно и проблематично исследование связи их строения с активностью. Данные по связи структура — активность позволяют иногда получать синтетические полипептиды с активностью, превосходящей природные. Так, варьируя аминокислотный состав нейрогипофизных гормонов (схема 4.4.1) было получено около 200 аналогов, из которых один, [4-ТИг]-оксито-цин оказался высокоактивным. [c.81]

    РАЗЛИЧИЯ В СТРОЕНИИ А- И В-ЦЕПЕЙ МОЛЕКУЛ ИНСУЛИНА НЕКОТОРЫХ видов МЛЕКОПИТАЮЩИХ [c.242]

    Расшифрованы первичные структуры миоглобина человека (153 аминокислотных остатка), а-цепи (141) и 3-цепи (146) гемоглобина человека, цитохрома С из сердечной мышцы человека (104), лизоцима молока человека (130), химотрипсиногена быка (245) и многих других белков, в том числе ферментов и токсинов. На рис. 1.14 представлена последовательность аминокислотных остатков проинсулина. Видно, что молекула инсулина (выделена темными кружками), состоящая из двух цепей (А-21 и В-30 аминокислотных остатков), образуется из своего предшественника-проинсулина (84 аминокислотных остатка), представленного одной полипептидной цепью, после отщепления от него пептида, состоящего из 33 аминокислотных остатков. Строение молекулы инсулина (51 аминокислотный остаток) схематически можно представить следующим образом  [c.57]

    Установление строения молекулы инсулина [c.776]

    Инсулин, получивший свое название от наименования панкреатических островков (лат. insula—островок), был первым белком, первичная структура которого была раскрыта в 1954 г. Ф. Сэнджером (см. главу 1). В чистом виде инсулин был получен в 1922 г. после его обнаружения в экстрактах панкреатических островков Ф. Бантингом и Ч. Бестом. Молекула инсулина, содержащая 51 аминокислотный остаток, состоит из двух полипептидных цепей, соединенных между собой в двух точках дисульфидными мостиками. Строение инсулина и его предшественника проинсулина приведено в главе 1 (см. рис. 1.14). В настоящее время принято обозначать цепью А инсулина 21-членный пептид и цепью В—пептид, содержащий 30 остатков аминокислот. Во многих лабораториях осуществлен, кроме того, химический синтез инсулина. Наиболее близким по своей структуре к инсулину человека является инсулин свиньи, у которого в цепи В вместо треонина в положении 30 содержится аланин. [c.268]

    Сопоставляя затем найденные пептиды, исследователь воссоздает рисунок строения изучаемого белка. Пример такой реконструкции представлен на рис. 7 для фенилаланиновой цепи инсулина. [c.519]

    Б. X, сформировалась как самостоятельная область во 2-й пол. 20 а на стыке биохимии и орг, химии, на основе традиционной химии прир. соединений. Ее развитие связано с именами Л. Полинга (открытие а-спирали как одного из главньп элементов пространста структуры полипептидной цепи в белках), А. Тодда (выяснение хим. строения нуклеотидов и первый синтез динуклеотида), Ф. Сенгера (разработка метода определения аминокислотной последовательности в белках и расшифровка с его помощью структуры инсулина), Дю Виньо (хим. синтез биологически активного гормона окситоцина), Д, Бартона и В. Прелога (конформационный анализ), Р. Вудворда (полный хим. синтез мн. сложных прир. соединений, в т.ч. резерпина, хлорофилла, витамина В] ) и др. крупных ученых. [c.288]

    Атомы цинка расположены на оси симметрии 3-го порядка и связаны с тремя имидазольными кольцами гистидинов В-10. Роль атомов цинка не совсем ясна. Гексамеры легко образуют ромбические кристаллы даже внутри панкреатических клеток, синтезирующих инсулин. Структура инсулина воплощает в себе основные особенности строения олигомерных ферментов, обладающих циклической или диэдрической симметрией. Как и в случае гексамера инсулина, центральные части таких молекул часто открыты и торчащие боковые группы аминокислотных остатков (в случае инсулина имидазольные группы) образуют как бы гнезда , в которые могут входить ионы или молекулы, регулирующие активность белков. Однако функциональная роль цинка при действии инсулина остается пока неизвестной. [c.293]

    Неотъемлемой частью учебника являются задачи и упражнения. Они необходимы не только для проверки приобретенных знаний, но главным образом для их активного применения—выбора рационального метода синтеза, установления строения. Многие фактические данные, которые в других учебниках даются в основном тексте, приведены здесь в задачах. Большинство задач основано на реальных исследованиях. Показательна в этом отношении последняя задача в гл. 37, в которой на основании известных химических и спектральных данных предлагается установить структуру инсулина. [c.5]

    Установлено строение белкового гормона инсулина, который регулирует сахарный обмен в организме. Этот гормон состоит из двух полипептидных цепей (с 21 и 30 аминокислотными остатками), соединенных мостиками из атомов серы. Определено строение Армента рибонуклеазы, состоящей из 124 аминокислотных остатков (рис. 11.2). [c.335]

    Что касается растворимых глобулярных белков (например, гемоглобина, инсулина, гамма-глобулина, яичного альбумина), то вопрос о характере вторичной структуры еще сложнее. Накапливаются данные, согласно которым и в этом случае а-спираль играет ключевую роль. Подобные длинные пептидные цепи не одинаковы по структуре по всей длине отдельные их участки свернуты в спирали и являются относительно жесткими другие участки образуют петли, скручены случайным образом и довольно подвижны. Установлено, что при денатурации белка спиральные участки раскручиваются и цепь в целом приобретает неупорядоченное строение. (Однако опыт показывает, что в определенных условиях раскручивание и возникновение спирали могут быть обратимыми процессами белок возвращается к исходной вторичной структуре, поскольку это расположение является наиболее стабильным для цепи с данной последовательностью аминокислот.) [c.1061]

    Глобулярные белки в большинстве случаев представляют собой растворимые в воде вещества, в которых благодаря полифункциональности аминокислот, входящих в состав макромолекулы, содержится значительное число гидрофильных групп. В противоположность гликогену, для которого доказано наличие сильно разветвленной структуры, строение глобулярных белков точно не установлено. Шарообразная форма макромолекул этих белков может быть обусловлена скручиванием полипептидных цепей, как это предложено, например, Перутцем для/емоглобина. При этом возможно скручивание на малых (около 5 А) и на больших (около 50 А) расстояниях. Наиболее подробно исследован инсулин, строение которого было выяснено Зангером. Вес его частицы — около 12 ООО в состав инсулина входят 102 остатка аминокислот, соединенных в четыре цепи. Одна цепь ( цепь глицина ) состоит из 21 аминокислотного остатка в ней имеются также внутримолекулярные цистиновые мостики двумя цистиновыми мостиками она соединяется с другой цепью ( цепь фенилаланина ), состоящей из 30 остатков аминокислот. Каждая пара таких двойных цепей, соединяясь, дает частицу инсулина. Растворимый инсулин при длительном нагревании при pH 2,0—2,5 превращается в фибриллярную модификацию обратное превращение может быть осуществлено при действии щелочи. [c.102]

    Следующим этапом исследований Сенгера было определение структуры небольших (в основном ди-, три- и тетра-) пептидов, выделенных из кислотного и щелочного гидролизатов фракций А и В инсулина. Строение пептидов определяли при помощи методов динитрофенилирования и карбоксипептидазного [384]. Кроме того, из гидролизата были выделены крупные пептиды, которые снова подвергались гидролизу и строение которых устанавливалось особо [385]. [c.134]

    Однако наибольший интерес для исследователя представляют не олигопептиды, а высшие пептиды. Установлением их аминокислотного строения занимаются многие лаборатории мира. Высшими пептидами являются прежде всего пептидные гормоны. Классическим примером служит инсулин, строение которого установлено благодаря работам Сенджера. Пептидные гормоны выделяют из поджелудочной железы, гипофиза, щитовидной железы и из крови Не все из них получены в чистом виде, поэтому говорить об их строении еще рано. Но ряд соединений хорошо изучен и даже получен синтетически (табл. 7). [c.161]

    ИНСУЛИН — гормон поджелудочной железы, регулирующий процессы угле- водного обмена и поддерживающий нормальный уровень сахара в крови. И. вырабатывается в р-клетках поджелудочной железы. И, — простой белок, наименьшая структурная единица его 2б1Нз77 вб0753с, молекулярная масса 5733. В водных растворах И. существует в виде крупных ассоциированных молекул. И.— первое сложное биологически активное вещестпо, строение которого удалось полностью расшифровать. И.— бесцветный кристаллический продукт, т. пл. 233 С, малг.растворим в воде, растворяется в разбавленных кислотах [c.109]

    Основываясь на принципах формульного схематизма, позволяющего проектировать синтез сколь угодно сложных органических соединений, н на закономерностях, устанавливающих зависимость реакционных свойств вещества от химического строения его молекул, структурные теории смогли обеспечить выдающиеся достижения в препаративном синтезе самых различных органических веществ вплоть до таких сложных, как витамины и гормоны, антибиотики и даже белки (инсулин). Мо они оказались не в состоянии указать пути осуществления процессов ароматизации парафинов или производства этилена, ацетилена и других олефиновых, ацети-лсмювых, диеновых углеводородов в широких промышленных масштабах. [c.101]

    Первое природное белковое вещество, строение которого было точно расшифровано (Сейнджер, 1949—1954),— гормон инсулин, вырабатываемый поджелудочной железой и регулирующий в животных организмах процессы углеводного обмена. [c.293]

    Ряд методов определения Ы-концевых аминокислот основан на алкилировании или ацилировании пептида и последующем гидролизе. В гидролизате концевая аминокислота обнаруживается в виде алкильного или ацильного производного. Наиболее важным и детально разработанным методом является метод динитрофенилирования белка, предложенный в 1945 г. Зангером и использованный им при установлении строения инсулина. [c.510]

    РЕЛАКСИН, пептидный гормон, молекула к-рого состоит из двух цепей, соединенных двумя дисульфидными мостиками мол. м. 5600. А-цепь состоит из 22, В-цопь — из 26 аминокислотных остатков. По расположению дисуль-фидных связей, а также пространств, строению Р. близок инсулину. Вырабатывается у беременных животных желтым телом яичников. [c.505]

    В период между 1944 н 1954 гг. развивались аналитические исследования по выделению, очистке и определению строения пептидов с высокой биологической активностью, а также методические разработки в области синтеза, например в 1950 г. был разработан метод смешанных ангидридов (Виланд, Буассона, Воган). Эти успехи сделали возможным химический синтез природных пептидов, обладающих биологической активностью. В 1953 г. дю Виньо удалось синтезировать первый пептидный гормон — окситоцин. Эта работа была удостоена Нобелевской премии за 1955 г. В следующие годы наступило бурное развитие синтетической пептидной химии, было предложено несколько новых защитных групп, эффективные методы кои-деисаш1и и иовые методические варианты, такие, как разработаниь й Меррифилдом в 1962 г. пептидный синтез иа полимерных носителях. Химический синтез инсулина и рибонуклеазы ознаменовал переход к белковому синтезу. [c.100]

    К середине 1940-х годов пептидная теория белков Фишера и Вальд-шмидт-Лейтца была почти повсеместно принята. Встал вопрос о точном знании деталей химического строения, т.е. о конкретном порядке расположения аминокислот в белковых цепях. Впервые такое сложное исследование удалось провести в течение десятилетия (1945-1954 гг.) ф. Сенгеру, определившему аминокислотную последовательность инсулина. Вторым белком была рибонуклеаза А. Полная структура этого фермента расшифрована С. Муром, К. Хирсом и У. Стейном (1960 г.). Вскоре идентификация химичекого строения белков стала производиться с помощью автоматических секвенаторов и приобрела рутинный характер. Однако достижения в решении первой фундаментальной задачи проблемы белка не принесли удовлетворения. Сначала не вызывало сомнений, что химические и физические свойства белков получат свое объяснение, как только станет известно химическое строение их молекул. Однако основанная на опыте всей органической химии и биохимии надежда на то, что установление химического типа и строения молекул окажется достаточным для понимания хотя бы в общих чертах их специфического функционирования, не оправдалась. Тем самым определение структуры из конечной цели исследования превратилось в необходимый для последующего изучения белков начальный этап. Утвердилась мысль, что химическая универсальность и практически необозримое многообразие свойств соединений этого класса при строгой специфичности его отдельных представителей связаны с особенностями пространственных структур белковых молекул. [c.67]

    К- сожалению, химики, изучающие новые реакции пептидов, обычно пользуются только простыми модельными соединениями, в том числе ди- и трипептидами, которые имеются в продаже. Это отчасти объясняется тем, что при переходе к более сложным полипептидам или белкам затрудняется контроль за ходом реакции. Другая причина заключается в малой доступности этих более сложных соединений, которые удается выделить в сравнительно небольших количествах, в связи с чем их строение устанавливалось на очень небольших образцах. Таким образом, жёлатель1ю добиться такого положения, чтобы исследователь мог приобрести образцы полипептидов известного строения и высокой степени чистоты, как это в настоящее время делается с образцами инсулина через Комиссию по белкам Международного союза теоретической и прикладной химии. [c.166]

    Большое сходство в химических и физических свойствах между синтетическими полипептидами Фишера и некоторыми белками (протеинами) оказало дальнейшую поддержку предположению, ранее выдвинутому Фишером и независимо от него Хофмейстером в 1902 г. о пептидном строении белков (протеинов). Эта теория предполагала, что молекула белка (протеина) построена только из цепей а-аминокислот (и позже, конечно, были включены а-ими-нокислоты), связанных друг с другом пептидными (амидными) связями между а-амино- и а-карбоксильными группами [см. формулу (1)].Сам Фишер учел, что возможны и другие способы соединения между аминокислотами в молекуле белка (протеина) и добавил к имеющимся сомнениям вопросы о размере и сложности природных белков, что вызвало в период 1920—1940 гг. различные предположения [3] об альтернативных способах связи между остатками аминокислот. Сэнджер [4] писал в 1952 г., что самым убедительным доводом в поддержку пептидной теории строения белков (протеинов) в действительности было то, что с 1902 г.— со времени ее возникновения, не были найдены опровергающие ее факты сам Сэнджер привел одно из первых убедительных доказательств этой теории, установив полную структуру белкового гормона инсулина. [c.218]

chem21.info


Смотрите также